Step |
Hyp |
Ref |
Expression |
1 |
|
nmpar.v |
|- V = ( Base ` W ) |
2 |
|
nmpar.p |
|- .+ = ( +g ` W ) |
3 |
|
nmpar.m |
|- .- = ( -g ` W ) |
4 |
|
nmpar.n |
|- N = ( norm ` W ) |
5 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
8 |
|
simp1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> W e. CPreHil ) |
9 |
|
simp2 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> A e. V ) |
10 |
|
simp3 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> B e. V ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
nmparlem |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |