| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmpar.v |
|- V = ( Base ` W ) |
| 2 |
|
nmpar.p |
|- .+ = ( +g ` W ) |
| 3 |
|
nmpar.m |
|- .- = ( -g ` W ) |
| 4 |
|
nmpar.n |
|- N = ( norm ` W ) |
| 5 |
|
nmpar.h |
|- ., = ( .i ` W ) |
| 6 |
|
nmpar.f |
|- F = ( Scalar ` W ) |
| 7 |
|
nmpar.k |
|- K = ( Base ` F ) |
| 8 |
|
nmpar.1 |
|- ( ph -> W e. CPreHil ) |
| 9 |
|
nmpar.2 |
|- ( ph -> A e. V ) |
| 10 |
|
nmpar.3 |
|- ( ph -> B e. V ) |
| 11 |
5 1 2 8 9 10 9 10
|
cph2di |
|- ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 12 |
5 1 3 8 9 10 9 10
|
cph2subdi |
|- ( ph -> ( ( A .- B ) ., ( A .- B ) ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) |
| 13 |
11 12
|
oveq12d |
|- ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) ) |
| 14 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
| 15 |
8 14
|
syl |
|- ( ph -> W e. CMod ) |
| 16 |
6 7
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
| 17 |
15 16
|
syl |
|- ( ph -> K C_ CC ) |
| 18 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 19 |
8 18
|
syl |
|- ( ph -> W e. PreHil ) |
| 20 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. K ) |
| 21 |
19 9 9 20
|
syl3anc |
|- ( ph -> ( A ., A ) e. K ) |
| 22 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. K ) |
| 23 |
19 10 10 22
|
syl3anc |
|- ( ph -> ( B ., B ) e. K ) |
| 24 |
6 7
|
clmacl |
|- ( ( W e. CMod /\ ( A ., A ) e. K /\ ( B ., B ) e. K ) -> ( ( A ., A ) + ( B ., B ) ) e. K ) |
| 25 |
15 21 23 24
|
syl3anc |
|- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. K ) |
| 26 |
17 25
|
sseldd |
|- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) |
| 27 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |
| 28 |
19 9 10 27
|
syl3anc |
|- ( ph -> ( A ., B ) e. K ) |
| 29 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) |
| 30 |
19 10 9 29
|
syl3anc |
|- ( ph -> ( B ., A ) e. K ) |
| 31 |
6 7
|
clmacl |
|- ( ( W e. CMod /\ ( A ., B ) e. K /\ ( B ., A ) e. K ) -> ( ( A ., B ) + ( B ., A ) ) e. K ) |
| 32 |
15 28 30 31
|
syl3anc |
|- ( ph -> ( ( A ., B ) + ( B ., A ) ) e. K ) |
| 33 |
17 32
|
sseldd |
|- ( ph -> ( ( A ., B ) + ( B ., A ) ) e. CC ) |
| 34 |
26 33 26
|
ppncand |
|- ( ph -> ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 35 |
13 34
|
eqtrd |
|- ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 36 |
|
cphlmod |
|- ( W e. CPreHil -> W e. LMod ) |
| 37 |
8 36
|
syl |
|- ( ph -> W e. LMod ) |
| 38 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ B ) e. V ) |
| 39 |
37 9 10 38
|
syl3anc |
|- ( ph -> ( A .+ B ) e. V ) |
| 40 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 41 |
8 39 40
|
syl2anc |
|- ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 42 |
1 3
|
lmodvsubcl |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) e. V ) |
| 43 |
37 9 10 42
|
syl3anc |
|- ( ph -> ( A .- B ) e. V ) |
| 44 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ ( A .- B ) e. V ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
| 45 |
8 43 44
|
syl2anc |
|- ( ph -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
| 46 |
41 45
|
oveq12d |
|- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) ) |
| 47 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| 48 |
8 9 47
|
syl2anc |
|- ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| 49 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
| 50 |
8 10 49
|
syl2anc |
|- ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
| 51 |
48 50
|
oveq12d |
|- ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) ) |
| 53 |
26
|
2timesd |
|- ( ph -> ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 54 |
52 53
|
eqtrd |
|- ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 55 |
35 46 54
|
3eqtr4d |
|- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |