Step |
Hyp |
Ref |
Expression |
1 |
|
nmpar.v |
|- V = ( Base ` W ) |
2 |
|
nmpar.p |
|- .+ = ( +g ` W ) |
3 |
|
nmpar.m |
|- .- = ( -g ` W ) |
4 |
|
nmpar.n |
|- N = ( norm ` W ) |
5 |
|
nmpar.h |
|- ., = ( .i ` W ) |
6 |
|
nmpar.f |
|- F = ( Scalar ` W ) |
7 |
|
nmpar.k |
|- K = ( Base ` F ) |
8 |
|
nmpar.1 |
|- ( ph -> W e. CPreHil ) |
9 |
|
nmpar.2 |
|- ( ph -> A e. V ) |
10 |
|
nmpar.3 |
|- ( ph -> B e. V ) |
11 |
5 1 2 8 9 10 9 10
|
cph2di |
|- ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
12 |
5 1 3 8 9 10 9 10
|
cph2subdi |
|- ( ph -> ( ( A .- B ) ., ( A .- B ) ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) |
13 |
11 12
|
oveq12d |
|- ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) ) |
14 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
15 |
8 14
|
syl |
|- ( ph -> W e. CMod ) |
16 |
6 7
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
17 |
15 16
|
syl |
|- ( ph -> K C_ CC ) |
18 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
19 |
8 18
|
syl |
|- ( ph -> W e. PreHil ) |
20 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. K ) |
21 |
19 9 9 20
|
syl3anc |
|- ( ph -> ( A ., A ) e. K ) |
22 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. K ) |
23 |
19 10 10 22
|
syl3anc |
|- ( ph -> ( B ., B ) e. K ) |
24 |
6 7
|
clmacl |
|- ( ( W e. CMod /\ ( A ., A ) e. K /\ ( B ., B ) e. K ) -> ( ( A ., A ) + ( B ., B ) ) e. K ) |
25 |
15 21 23 24
|
syl3anc |
|- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. K ) |
26 |
17 25
|
sseldd |
|- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) |
27 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |
28 |
19 9 10 27
|
syl3anc |
|- ( ph -> ( A ., B ) e. K ) |
29 |
6 5 1 7
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) |
30 |
19 10 9 29
|
syl3anc |
|- ( ph -> ( B ., A ) e. K ) |
31 |
6 7
|
clmacl |
|- ( ( W e. CMod /\ ( A ., B ) e. K /\ ( B ., A ) e. K ) -> ( ( A ., B ) + ( B ., A ) ) e. K ) |
32 |
15 28 30 31
|
syl3anc |
|- ( ph -> ( ( A ., B ) + ( B ., A ) ) e. K ) |
33 |
17 32
|
sseldd |
|- ( ph -> ( ( A ., B ) + ( B ., A ) ) e. CC ) |
34 |
26 33 26
|
ppncand |
|- ( ph -> ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
35 |
13 34
|
eqtrd |
|- ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
36 |
|
cphlmod |
|- ( W e. CPreHil -> W e. LMod ) |
37 |
8 36
|
syl |
|- ( ph -> W e. LMod ) |
38 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ B ) e. V ) |
39 |
37 9 10 38
|
syl3anc |
|- ( ph -> ( A .+ B ) e. V ) |
40 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
41 |
8 39 40
|
syl2anc |
|- ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
42 |
1 3
|
lmodvsubcl |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) e. V ) |
43 |
37 9 10 42
|
syl3anc |
|- ( ph -> ( A .- B ) e. V ) |
44 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ ( A .- B ) e. V ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
45 |
8 43 44
|
syl2anc |
|- ( ph -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
46 |
41 45
|
oveq12d |
|- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) ) |
47 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
48 |
8 9 47
|
syl2anc |
|- ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
49 |
1 5 4
|
nmsq |
|- ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
50 |
8 10 49
|
syl2anc |
|- ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
51 |
48 50
|
oveq12d |
|- ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
52 |
51
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) ) |
53 |
26
|
2timesd |
|- ( ph -> ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
54 |
52 53
|
eqtrd |
|- ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
55 |
35 46 54
|
3eqtr4d |
|- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |