| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmpropd2.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
nmpropd2.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
nmpropd2.3 |
|- ( ph -> K e. Grp ) |
| 4 |
|
nmpropd2.4 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 5 |
|
nmpropd2.5 |
|- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
| 6 |
1 2
|
eqtr3d |
|- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 7 |
1
|
sqxpeqd |
|- ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 8 |
7
|
reseq2d |
|- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 9 |
5 8
|
eqtr3d |
|- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 10 |
2
|
sqxpeqd |
|- ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 11 |
10
|
reseq2d |
|- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 12 |
9 11
|
eqtr3d |
|- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 13 |
|
eqidd |
|- ( ph -> a = a ) |
| 14 |
1 2 4
|
grpidpropd |
|- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 15 |
12 13 14
|
oveq123d |
|- ( ph -> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) = ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) |
| 16 |
6 15
|
mpteq12dv |
|- ( ph -> ( a e. ( Base ` K ) |-> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) ) = ( a e. ( Base ` L ) |-> ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) ) |
| 17 |
|
eqid |
|- ( norm ` K ) = ( norm ` K ) |
| 18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 19 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 20 |
|
eqid |
|- ( dist ` K ) = ( dist ` K ) |
| 21 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 22 |
17 18 19 20 21
|
nmfval2 |
|- ( K e. Grp -> ( norm ` K ) = ( a e. ( Base ` K ) |-> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) ) ) |
| 23 |
3 22
|
syl |
|- ( ph -> ( norm ` K ) = ( a e. ( Base ` K ) |-> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) ) ) |
| 24 |
1 2 4
|
grppropd |
|- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| 25 |
3 24
|
mpbid |
|- ( ph -> L e. Grp ) |
| 26 |
|
eqid |
|- ( norm ` L ) = ( norm ` L ) |
| 27 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 28 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 29 |
|
eqid |
|- ( dist ` L ) = ( dist ` L ) |
| 30 |
|
eqid |
|- ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 31 |
26 27 28 29 30
|
nmfval2 |
|- ( L e. Grp -> ( norm ` L ) = ( a e. ( Base ` L ) |-> ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) ) |
| 32 |
25 31
|
syl |
|- ( ph -> ( norm ` L ) = ( a e. ( Base ` L ) |-> ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) ) |
| 33 |
16 23 32
|
3eqtr4d |
|- ( ph -> ( norm ` K ) = ( norm ` L ) ) |