Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
|- V = ( Base ` W ) |
2 |
|
nmsq.h |
|- ., = ( .i ` W ) |
3 |
|
nmsq.n |
|- N = ( norm ` W ) |
4 |
1 2 3
|
cphnm |
|- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |
5 |
4
|
oveq1d |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( ( sqrt ` ( A ., A ) ) ^ 2 ) ) |
6 |
1 2
|
cphipcl |
|- ( ( W e. CPreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. CC ) |
7 |
6
|
3anidm23 |
|- ( ( W e. CPreHil /\ A e. V ) -> ( A ., A ) e. CC ) |
8 |
7
|
sqsqrtd |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( sqrt ` ( A ., A ) ) ^ 2 ) = ( A ., A ) ) |
9 |
5 8
|
eqtrd |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |