| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmfval2.n |
|- N = ( norm ` W ) |
| 2 |
|
nmfval2.x |
|- X = ( Base ` W ) |
| 3 |
|
nmfval2.z |
|- .0. = ( 0g ` W ) |
| 4 |
|
nmfval2.d |
|- D = ( dist ` W ) |
| 5 |
|
nmfval2.e |
|- E = ( D |` ( X X. X ) ) |
| 6 |
1 2 3 4
|
nmval |
|- ( A e. X -> ( N ` A ) = ( A D .0. ) ) |
| 7 |
6
|
adantl |
|- ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A D .0. ) ) |
| 8 |
5
|
oveqi |
|- ( A E .0. ) = ( A ( D |` ( X X. X ) ) .0. ) |
| 9 |
|
id |
|- ( A e. X -> A e. X ) |
| 10 |
2 3
|
grpidcl |
|- ( W e. Grp -> .0. e. X ) |
| 11 |
|
ovres |
|- ( ( A e. X /\ .0. e. X ) -> ( A ( D |` ( X X. X ) ) .0. ) = ( A D .0. ) ) |
| 12 |
9 10 11
|
syl2anr |
|- ( ( W e. Grp /\ A e. X ) -> ( A ( D |` ( X X. X ) ) .0. ) = ( A D .0. ) ) |
| 13 |
8 12
|
eqtr2id |
|- ( ( W e. Grp /\ A e. X ) -> ( A D .0. ) = ( A E .0. ) ) |
| 14 |
7 13
|
eqtrd |
|- ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A E .0. ) ) |