| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3mix3 |
|- ( N = 3 -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |
| 2 |
1
|
a1d |
|- ( N = 3 -> ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) ) |
| 3 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> N e. RR ) |
| 5 |
|
3re |
|- 3 e. RR |
| 6 |
5
|
a1i |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> 3 e. RR ) |
| 7 |
|
simp3 |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> N <_ 3 ) |
| 8 |
4 6 7
|
leltned |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N < 3 <-> 3 =/= N ) ) |
| 9 |
|
nesym |
|- ( 3 =/= N <-> -. N = 3 ) |
| 10 |
8 9
|
bitr2di |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( -. N = 3 <-> N < 3 ) ) |
| 11 |
|
elnnnn0c |
|- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) ) |
| 12 |
|
orc |
|- ( N = 1 -> ( N = 1 \/ N = 2 ) ) |
| 13 |
12
|
2a1d |
|- ( N = 1 -> ( N e. NN -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) ) |
| 14 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
| 15 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) |
| 16 |
|
2a1 |
|- ( N = 2 -> ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) ) |
| 17 |
|
zre |
|- ( 2 e. ZZ -> 2 e. RR ) |
| 18 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 19 |
|
id |
|- ( 2 <_ N -> 2 <_ N ) |
| 20 |
|
leltne |
|- ( ( 2 e. RR /\ N e. RR /\ 2 <_ N ) -> ( 2 < N <-> N =/= 2 ) ) |
| 21 |
17 18 19 20
|
syl3an |
|- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( 2 < N <-> N =/= 2 ) ) |
| 22 |
|
2z |
|- 2 e. ZZ |
| 23 |
|
simpr |
|- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> 2 < N ) |
| 24 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 25 |
24
|
a1i |
|- ( N e. ZZ -> 3 = ( 2 + 1 ) ) |
| 26 |
25
|
breq2d |
|- ( N e. ZZ -> ( N < 3 <-> N < ( 2 + 1 ) ) ) |
| 27 |
26
|
biimpa |
|- ( ( N e. ZZ /\ N < 3 ) -> N < ( 2 + 1 ) ) |
| 28 |
27
|
adantr |
|- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> N < ( 2 + 1 ) ) |
| 29 |
|
btwnnz |
|- ( ( 2 e. ZZ /\ 2 < N /\ N < ( 2 + 1 ) ) -> -. N e. ZZ ) |
| 30 |
22 23 28 29
|
mp3an2i |
|- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> -. N e. ZZ ) |
| 31 |
30
|
pm2.21d |
|- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> ( N e. ZZ -> N = 2 ) ) |
| 32 |
31
|
exp31 |
|- ( N e. ZZ -> ( N < 3 -> ( 2 < N -> ( N e. ZZ -> N = 2 ) ) ) ) |
| 33 |
32
|
com24 |
|- ( N e. ZZ -> ( N e. ZZ -> ( 2 < N -> ( N < 3 -> N = 2 ) ) ) ) |
| 34 |
33
|
pm2.43i |
|- ( N e. ZZ -> ( 2 < N -> ( N < 3 -> N = 2 ) ) ) |
| 35 |
34
|
3ad2ant2 |
|- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( 2 < N -> ( N < 3 -> N = 2 ) ) ) |
| 36 |
21 35
|
sylbird |
|- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N =/= 2 -> ( N < 3 -> N = 2 ) ) ) |
| 37 |
36
|
com12 |
|- ( N =/= 2 -> ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) ) |
| 38 |
16 37
|
pm2.61ine |
|- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) |
| 39 |
15 38
|
sylbi |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 3 -> N = 2 ) ) |
| 40 |
39
|
imp |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N < 3 ) -> N = 2 ) |
| 41 |
40
|
olcd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N < 3 ) -> ( N = 1 \/ N = 2 ) ) |
| 42 |
41
|
ex |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 43 |
14 42
|
sylbir |
|- ( ( N e. NN /\ N =/= 1 ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 44 |
43
|
expcom |
|- ( N =/= 1 -> ( N e. NN -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) ) |
| 45 |
13 44
|
pm2.61ine |
|- ( N e. NN -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 46 |
11 45
|
sylbir |
|- ( ( N e. NN0 /\ 1 <_ N ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 47 |
46
|
3adant3 |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 48 |
10 47
|
sylbid |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( -. N = 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 49 |
48
|
impcom |
|- ( ( -. N = 3 /\ ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) ) -> ( N = 1 \/ N = 2 ) ) |
| 50 |
49
|
orcd |
|- ( ( -. N = 3 /\ ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) ) -> ( ( N = 1 \/ N = 2 ) \/ N = 3 ) ) |
| 51 |
|
df-3or |
|- ( ( N = 1 \/ N = 2 \/ N = 3 ) <-> ( ( N = 1 \/ N = 2 ) \/ N = 3 ) ) |
| 52 |
50 51
|
sylibr |
|- ( ( -. N = 3 /\ ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |
| 53 |
52
|
ex |
|- ( -. N = 3 -> ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) ) |
| 54 |
2 53
|
pm2.61i |
|- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |