Metamath Proof Explorer


Theorem nn0abscl

Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion nn0abscl
|- ( A e. ZZ -> ( abs ` A ) e. NN0 )

Proof

Step Hyp Ref Expression
1 zre
 |-  ( A e. ZZ -> A e. RR )
2 absz
 |-  ( A e. RR -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) )
3 1 2 syl
 |-  ( A e. ZZ -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) )
4 3 ibi
 |-  ( A e. ZZ -> ( abs ` A ) e. ZZ )
5 zcn
 |-  ( A e. ZZ -> A e. CC )
6 absge0
 |-  ( A e. CC -> 0 <_ ( abs ` A ) )
7 5 6 syl
 |-  ( A e. ZZ -> 0 <_ ( abs ` A ) )
8 elnn0z
 |-  ( ( abs ` A ) e. NN0 <-> ( ( abs ` A ) e. ZZ /\ 0 <_ ( abs ` A ) ) )
9 4 7 8 sylanbrc
 |-  ( A e. ZZ -> ( abs ` A ) e. NN0 )