Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0abscl | |- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
2 | absz | |- ( A e. RR -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |
|
3 | 1 2 | syl | |- ( A e. ZZ -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |
4 | 3 | ibi | |- ( A e. ZZ -> ( abs ` A ) e. ZZ ) |
5 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
6 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
7 | 5 6 | syl | |- ( A e. ZZ -> 0 <_ ( abs ` A ) ) |
8 | elnn0z | |- ( ( abs ` A ) e. NN0 <-> ( ( abs ` A ) e. ZZ /\ 0 <_ ( abs ` A ) ) ) |
|
9 | 4 7 8 | sylanbrc | |- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |