Metamath Proof Explorer


Theorem nn0addcl

Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion nn0addcl
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. NN0 )

Proof

Step Hyp Ref Expression
1 nnsscn
 |-  NN C_ CC
2 id
 |-  ( NN C_ CC -> NN C_ CC )
3 df-n0
 |-  NN0 = ( NN u. { 0 } )
4 nnaddcl
 |-  ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN )
5 4 adantl
 |-  ( ( NN C_ CC /\ ( M e. NN /\ N e. NN ) ) -> ( M + N ) e. NN )
6 2 3 5 un0addcl
 |-  ( ( NN C_ CC /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M + N ) e. NN0 )
7 1 6 mpan
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. NN0 )