Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Mario Carneiro, 17-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0addcl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn | |- NN C_ CC |
|
2 | id | |- ( NN C_ CC -> NN C_ CC ) |
|
3 | df-n0 | |- NN0 = ( NN u. { 0 } ) |
|
4 | nnaddcl | |- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
|
5 | 4 | adantl | |- ( ( NN C_ CC /\ ( M e. NN /\ N e. NN ) ) -> ( M + N ) e. NN ) |
6 | 2 3 5 | un0addcl | |- ( ( NN C_ CC /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M + N ) e. NN0 ) |
7 | 1 6 | mpan | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M + N ) e. NN0 ) |