Metamath Proof Explorer


Theorem nn0addcld

Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nn0red.1
|- ( ph -> A e. NN0 )
nn0addcld.2
|- ( ph -> B e. NN0 )
Assertion nn0addcld
|- ( ph -> ( A + B ) e. NN0 )

Proof

Step Hyp Ref Expression
1 nn0red.1
 |-  ( ph -> A e. NN0 )
2 nn0addcld.2
 |-  ( ph -> B e. NN0 )
3 nn0addcl
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( ph -> ( A + B ) e. NN0 )