Metamath Proof Explorer


Theorem nn0cn

Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion nn0cn
|- ( A e. NN0 -> A e. CC )

Proof

Step Hyp Ref Expression
1 nn0sscn
 |-  NN0 C_ CC
2 1 sseli
 |-  ( A e. NN0 -> A e. CC )