Metamath Proof Explorer


Theorem nn0difffzod

Description: A nonnegative integer that is not in the half-open range from 0 to N is at least N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses nn0difffzod.1
|- ( ph -> N e. ZZ )
nn0difffzod.2
|- ( ph -> M e. ( NN0 \ ( 0 ..^ N ) ) )
Assertion nn0difffzod
|- ( ph -> -. M < N )

Proof

Step Hyp Ref Expression
1 nn0difffzod.1
 |-  ( ph -> N e. ZZ )
2 nn0difffzod.2
 |-  ( ph -> M e. ( NN0 \ ( 0 ..^ N ) ) )
3 2 eldifbd
 |-  ( ph -> -. M e. ( 0 ..^ N ) )
4 2 eldifad
 |-  ( ph -> M e. NN0 )
5 elfzo0z
 |-  ( M e. ( 0 ..^ N ) <-> ( M e. NN0 /\ N e. ZZ /\ M < N ) )
6 5 biimpri
 |-  ( ( M e. NN0 /\ N e. ZZ /\ M < N ) -> M e. ( 0 ..^ N ) )
7 6 3expa
 |-  ( ( ( M e. NN0 /\ N e. ZZ ) /\ M < N ) -> M e. ( 0 ..^ N ) )
8 7 con3i
 |-  ( -. M e. ( 0 ..^ N ) -> -. ( ( M e. NN0 /\ N e. ZZ ) /\ M < N ) )
9 imnan
 |-  ( ( ( M e. NN0 /\ N e. ZZ ) -> -. M < N ) <-> -. ( ( M e. NN0 /\ N e. ZZ ) /\ M < N ) )
10 8 9 sylibr
 |-  ( -. M e. ( 0 ..^ N ) -> ( ( M e. NN0 /\ N e. ZZ ) -> -. M < N ) )
11 10 imp
 |-  ( ( -. M e. ( 0 ..^ N ) /\ ( M e. NN0 /\ N e. ZZ ) ) -> -. M < N )
12 3 4 1 11 syl12anc
 |-  ( ph -> -. M < N )