Step |
Hyp |
Ref |
Expression |
1 |
|
nn0difffzod.1 |
|- ( ph -> N e. ZZ ) |
2 |
|
nn0difffzod.2 |
|- ( ph -> M e. ( NN0 \ ( 0 ..^ N ) ) ) |
3 |
2
|
eldifbd |
|- ( ph -> -. M e. ( 0 ..^ N ) ) |
4 |
2
|
eldifad |
|- ( ph -> M e. NN0 ) |
5 |
|
elfzo0z |
|- ( M e. ( 0 ..^ N ) <-> ( M e. NN0 /\ N e. ZZ /\ M < N ) ) |
6 |
5
|
biimpri |
|- ( ( M e. NN0 /\ N e. ZZ /\ M < N ) -> M e. ( 0 ..^ N ) ) |
7 |
6
|
3expa |
|- ( ( ( M e. NN0 /\ N e. ZZ ) /\ M < N ) -> M e. ( 0 ..^ N ) ) |
8 |
7
|
con3i |
|- ( -. M e. ( 0 ..^ N ) -> -. ( ( M e. NN0 /\ N e. ZZ ) /\ M < N ) ) |
9 |
|
imnan |
|- ( ( ( M e. NN0 /\ N e. ZZ ) -> -. M < N ) <-> -. ( ( M e. NN0 /\ N e. ZZ ) /\ M < N ) ) |
10 |
8 9
|
sylibr |
|- ( -. M e. ( 0 ..^ N ) -> ( ( M e. NN0 /\ N e. ZZ ) -> -. M < N ) ) |
11 |
10
|
imp |
|- ( ( -. M e. ( 0 ..^ N ) /\ ( M e. NN0 /\ N e. ZZ ) ) -> -. M < N ) |
12 |
3 4 1 11
|
syl12anc |
|- ( ph -> -. M < N ) |