Step |
Hyp |
Ref |
Expression |
1 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
2 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
3 |
|
2re |
|- 2 e. RR |
4 |
3
|
a1i |
|- ( N e. NN0 -> 2 e. RR ) |
5 |
|
2pos |
|- 0 < 2 |
6 |
5
|
a1i |
|- ( N e. NN0 -> 0 < 2 ) |
7 |
|
ge0div |
|- ( ( N e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 <_ N <-> 0 <_ ( N / 2 ) ) ) |
8 |
2 4 6 7
|
syl3anc |
|- ( N e. NN0 -> ( 0 <_ N <-> 0 <_ ( N / 2 ) ) ) |
9 |
1 8
|
mpbid |
|- ( N e. NN0 -> 0 <_ ( N / 2 ) ) |
10 |
|
evendiv2z |
|- ( N e. Even -> ( N / 2 ) e. ZZ ) |
11 |
9 10
|
anim12ci |
|- ( ( N e. NN0 /\ N e. Even ) -> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) |
12 |
|
elnn0z |
|- ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) |
13 |
11 12
|
sylibr |
|- ( ( N e. NN0 /\ N e. Even ) -> ( N / 2 ) e. NN0 ) |