| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 2 |  | evend2 |  |-  ( N e. ZZ -> ( 2 || N <-> ( N / 2 ) e. ZZ ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. NN0 -> ( 2 || N <-> ( N / 2 ) e. ZZ ) ) | 
						
							| 4 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 5 |  | 2rp |  |-  2 e. RR+ | 
						
							| 6 | 5 | a1i |  |-  ( N e. NN0 -> 2 e. RR+ ) | 
						
							| 7 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 8 | 4 6 7 | divge0d |  |-  ( N e. NN0 -> 0 <_ ( N / 2 ) ) | 
						
							| 9 | 8 | anim1ci |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. ZZ ) -> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) | 
						
							| 10 |  | elnn0z |  |-  ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. ZZ ) -> ( N / 2 ) e. NN0 ) | 
						
							| 12 | 11 | ex |  |-  ( N e. NN0 -> ( ( N / 2 ) e. ZZ -> ( N / 2 ) e. NN0 ) ) | 
						
							| 13 | 3 12 | sylbid |  |-  ( N e. NN0 -> ( 2 || N -> ( N / 2 ) e. NN0 ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( N e. NN0 /\ 2 || N ) -> ( N / 2 ) e. NN0 ) |