| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. NN \/ ( N / 2 ) = 0 ) ) | 
						
							| 2 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 3 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 4 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 5 | 4 | a1i |  |-  ( N e. NN -> 2 =/= 0 ) | 
						
							| 6 | 2 3 5 | diveq0ad |  |-  ( N e. NN -> ( ( N / 2 ) = 0 <-> N = 0 ) ) | 
						
							| 7 |  | eleq1 |  |-  ( N = 0 -> ( N e. NN <-> 0 e. NN ) ) | 
						
							| 8 |  | 0nnn |  |-  -. 0 e. NN | 
						
							| 9 | 8 | pm2.21i |  |-  ( 0 e. NN -> ( N / 2 ) e. NN ) | 
						
							| 10 | 7 9 | biimtrdi |  |-  ( N = 0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) | 
						
							| 11 | 10 | com12 |  |-  ( N e. NN -> ( N = 0 -> ( N / 2 ) e. NN ) ) | 
						
							| 12 | 6 11 | sylbid |  |-  ( N e. NN -> ( ( N / 2 ) = 0 -> ( N / 2 ) e. NN ) ) | 
						
							| 13 | 12 | com12 |  |-  ( ( N / 2 ) = 0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) | 
						
							| 14 | 13 | jao1i |  |-  ( ( ( N / 2 ) e. NN \/ ( N / 2 ) = 0 ) -> ( N e. NN -> ( N / 2 ) e. NN ) ) | 
						
							| 15 | 1 14 | sylbi |  |-  ( ( N / 2 ) e. NN0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) | 
						
							| 16 | 15 | com12 |  |-  ( N e. NN -> ( ( N / 2 ) e. NN0 -> ( N / 2 ) e. NN ) ) | 
						
							| 17 |  | nnnn0 |  |-  ( ( N / 2 ) e. NN -> ( N / 2 ) e. NN0 ) | 
						
							| 18 | 16 17 | impbid1 |  |-  ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) |