| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0ex |
|- NN0 e. _V |
| 2 |
|
nnex |
|- NN e. _V |
| 3 |
|
nn0p1nn |
|- ( x e. NN0 -> ( x + 1 ) e. NN ) |
| 4 |
|
nnm1nn0 |
|- ( y e. NN -> ( y - 1 ) e. NN0 ) |
| 5 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 6 |
|
nn0cn |
|- ( x e. NN0 -> x e. CC ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
subadd |
|- ( ( y e. CC /\ 1 e. CC /\ x e. CC ) -> ( ( y - 1 ) = x <-> ( 1 + x ) = y ) ) |
| 9 |
7 8
|
mp3an2 |
|- ( ( y e. CC /\ x e. CC ) -> ( ( y - 1 ) = x <-> ( 1 + x ) = y ) ) |
| 10 |
|
eqcom |
|- ( x = ( y - 1 ) <-> ( y - 1 ) = x ) |
| 11 |
|
eqcom |
|- ( y = ( 1 + x ) <-> ( 1 + x ) = y ) |
| 12 |
9 10 11
|
3bitr4g |
|- ( ( y e. CC /\ x e. CC ) -> ( x = ( y - 1 ) <-> y = ( 1 + x ) ) ) |
| 13 |
|
addcom |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 + x ) = ( x + 1 ) ) |
| 14 |
7 13
|
mpan |
|- ( x e. CC -> ( 1 + x ) = ( x + 1 ) ) |
| 15 |
14
|
eqeq2d |
|- ( x e. CC -> ( y = ( 1 + x ) <-> y = ( x + 1 ) ) ) |
| 16 |
15
|
adantl |
|- ( ( y e. CC /\ x e. CC ) -> ( y = ( 1 + x ) <-> y = ( x + 1 ) ) ) |
| 17 |
12 16
|
bitrd |
|- ( ( y e. CC /\ x e. CC ) -> ( x = ( y - 1 ) <-> y = ( x + 1 ) ) ) |
| 18 |
5 6 17
|
syl2anr |
|- ( ( x e. NN0 /\ y e. NN ) -> ( x = ( y - 1 ) <-> y = ( x + 1 ) ) ) |
| 19 |
1 2 3 4 18
|
en3i |
|- NN0 ~~ NN |