Metamath Proof Explorer


Theorem nn0expcld

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses nn0expcld.1
|- ( ph -> A e. NN0 )
nn0expcld.2
|- ( ph -> N e. NN0 )
Assertion nn0expcld
|- ( ph -> ( A ^ N ) e. NN0 )

Proof

Step Hyp Ref Expression
1 nn0expcld.1
 |-  ( ph -> A e. NN0 )
2 nn0expcld.2
 |-  ( ph -> N e. NN0 )
3 nn0expcl
 |-  ( ( A e. NN0 /\ N e. NN0 ) -> ( A ^ N ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^ N ) e. NN0 )