Metamath Proof Explorer


Theorem nn0expcli

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses nn0expcli.1
|- A e. NN0
nn0expcli.2
|- N e. NN0
Assertion nn0expcli
|- ( A ^ N ) e. NN0

Proof

Step Hyp Ref Expression
1 nn0expcli.1
 |-  A e. NN0
2 nn0expcli.2
 |-  N e. NN0
3 nn0expcl
 |-  ( ( A e. NN0 /\ N e. NN0 ) -> ( A ^ N ) e. NN0 )
4 1 2 3 mp2an
 |-  ( A ^ N ) e. NN0