Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0fz0 | |- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( N e. NN0 -> N e. NN0 ) |
|
2 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
3 | 2 | leidd | |- ( N e. NN0 -> N <_ N ) |
4 | fznn0 | |- ( N e. NN0 -> ( N e. ( 0 ... N ) <-> ( N e. NN0 /\ N <_ N ) ) ) |
|
5 | 1 3 4 | mpbir2and | |- ( N e. NN0 -> N e. ( 0 ... N ) ) |
6 | elfz3nn0 | |- ( N e. ( 0 ... N ) -> N e. NN0 ) |
|
7 | 5 6 | impbii | |- ( N e. NN0 <-> N e. ( 0 ... N ) ) |