Metamath Proof Explorer


Theorem nn0fz0

Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018)

Ref Expression
Assertion nn0fz0
|- ( N e. NN0 <-> N e. ( 0 ... N ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( N e. NN0 -> N e. NN0 )
2 nn0re
 |-  ( N e. NN0 -> N e. RR )
3 2 leidd
 |-  ( N e. NN0 -> N <_ N )
4 fznn0
 |-  ( N e. NN0 -> ( N e. ( 0 ... N ) <-> ( N e. NN0 /\ N <_ N ) ) )
5 1 3 4 mpbir2and
 |-  ( N e. NN0 -> N e. ( 0 ... N ) )
6 elfz3nn0
 |-  ( N e. ( 0 ... N ) -> N e. NN0 )
7 5 6 impbii
 |-  ( N e. NN0 <-> N e. ( 0 ... N ) )