Description: The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0gcdid0 | |- ( N e. NN0 -> ( N gcd 0 ) = N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
2 | gcdid0 | |- ( N e. ZZ -> ( N gcd 0 ) = ( abs ` N ) ) |
|
3 | 1 2 | syl | |- ( N e. NN0 -> ( N gcd 0 ) = ( abs ` N ) ) |
4 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
5 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
6 | 4 5 | absidd | |- ( N e. NN0 -> ( abs ` N ) = N ) |
7 | 3 6 | eqtrd | |- ( N e. NN0 -> ( N gcd 0 ) = N ) |