| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 3 |
|
id |
|- ( N = 0 -> N = 0 ) |
| 4 |
3
|
eqcomd |
|- ( N = 0 -> 0 = N ) |
| 5 |
2 4
|
orim12i |
|- ( ( N e. NN \/ N = 0 ) -> ( 0 < N \/ 0 = N ) ) |
| 6 |
1 5
|
sylbi |
|- ( N e. NN0 -> ( 0 < N \/ 0 = N ) ) |
| 7 |
|
0re |
|- 0 e. RR |
| 8 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 9 |
|
leloe |
|- ( ( 0 e. RR /\ N e. RR ) -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) ) |
| 10 |
7 8 9
|
sylancr |
|- ( N e. NN0 -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) ) |
| 11 |
6 10
|
mpbird |
|- ( N e. NN0 -> 0 <_ N ) |