Metamath Proof Explorer


Theorem nn0ge2m1nn0

Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018)

Ref Expression
Assertion nn0ge2m1nn0
|- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN0 )

Proof

Step Hyp Ref Expression
1 nn0ge2m1nn
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN )
2 1 nnnn0d
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN0 )