Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0ge2m1nn0 | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge2m1nn | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN ) |
|
2 | 1 | nnnn0d | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN0 ) |