Metamath Proof Explorer


Theorem nn0ge2m1nnALT

Description: Alternate proof of nn0ge2m1nn : If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 , a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn . (Contributed by Alexander van der Vekens, 1-Aug-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nn0ge2m1nnALT
|- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 1 a1i
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> 2 e. ZZ )
3 nn0z
 |-  ( N e. NN0 -> N e. ZZ )
4 3 adantr
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> N e. ZZ )
5 simpr
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> 2 <_ N )
6 eluz2
 |-  ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) )
7 2 4 5 6 syl3anbrc
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> N e. ( ZZ>= ` 2 ) )
8 uz2m1nn
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN )
9 7 8 syl
 |-  ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN )