Step |
Hyp |
Ref |
Expression |
1 |
|
nn0gsumfz.b |
|- B = ( Base ` G ) |
2 |
|
nn0gsumfz.0 |
|- .0. = ( 0g ` G ) |
3 |
|
nn0gsumfz.g |
|- ( ph -> G e. CMnd ) |
4 |
|
nn0gsumfz.f |
|- ( ph -> F e. ( B ^m NN0 ) ) |
5 |
|
nn0gsumfz.y |
|- ( ph -> F finSupp .0. ) |
6 |
2
|
fvexi |
|- .0. e. _V |
7 |
4 6
|
jctir |
|- ( ph -> ( F e. ( B ^m NN0 ) /\ .0. e. _V ) ) |
8 |
|
fsuppmapnn0ub |
|- ( ( F e. ( B ^m NN0 ) /\ .0. e. _V ) -> ( F finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) ) |
9 |
7 5 8
|
sylc |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) |
10 |
|
eqidd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) ) |
11 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) |
12 |
3
|
adantr |
|- ( ( ph /\ s e. NN0 ) -> G e. CMnd ) |
13 |
4
|
adantr |
|- ( ( ph /\ s e. NN0 ) -> F e. ( B ^m NN0 ) ) |
14 |
|
simpr |
|- ( ( ph /\ s e. NN0 ) -> s e. NN0 ) |
15 |
|
eqid |
|- ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) |
16 |
1 2 12 13 14 15
|
fsfnn0gsumfsffz |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) -> ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) |
17 |
16
|
imp |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) |
18 |
13
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> F e. ( B ^m NN0 ) ) |
19 |
|
fz0ssnn0 |
|- ( 0 ... s ) C_ NN0 |
20 |
|
elmapssres |
|- ( ( F e. ( B ^m NN0 ) /\ ( 0 ... s ) C_ NN0 ) -> ( F |` ( 0 ... s ) ) e. ( B ^m ( 0 ... s ) ) ) |
21 |
18 19 20
|
sylancl |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( F |` ( 0 ... s ) ) e. ( B ^m ( 0 ... s ) ) ) |
22 |
|
eqeq1 |
|- ( f = ( F |` ( 0 ... s ) ) -> ( f = ( F |` ( 0 ... s ) ) <-> ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) ) ) |
23 |
|
oveq2 |
|- ( f = ( F |` ( 0 ... s ) ) -> ( G gsum f ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) |
24 |
23
|
eqeq2d |
|- ( f = ( F |` ( 0 ... s ) ) -> ( ( G gsum F ) = ( G gsum f ) <-> ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) |
25 |
22 24
|
3anbi13d |
|- ( f = ( F |` ( 0 ... s ) ) -> ( ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) <-> ( ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) ) |
26 |
25
|
adantl |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) /\ f = ( F |` ( 0 ... s ) ) ) -> ( ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) <-> ( ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) ) |
27 |
21 26
|
rspcedv |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( ( ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) -> E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) ) |
28 |
10 11 17 27
|
mp3and |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) |
29 |
28
|
ex |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) -> E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) ) |
30 |
29
|
reximdva |
|- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) ) |
31 |
9 30
|
mpd |
|- ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) |