Metamath Proof Explorer


Theorem nn0ind

Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004)

Ref Expression
Hypotheses nn0ind.1
|- ( x = 0 -> ( ph <-> ps ) )
nn0ind.2
|- ( x = y -> ( ph <-> ch ) )
nn0ind.3
|- ( x = ( y + 1 ) -> ( ph <-> th ) )
nn0ind.4
|- ( x = A -> ( ph <-> ta ) )
nn0ind.5
|- ps
nn0ind.6
|- ( y e. NN0 -> ( ch -> th ) )
Assertion nn0ind
|- ( A e. NN0 -> ta )

Proof

Step Hyp Ref Expression
1 nn0ind.1
 |-  ( x = 0 -> ( ph <-> ps ) )
2 nn0ind.2
 |-  ( x = y -> ( ph <-> ch ) )
3 nn0ind.3
 |-  ( x = ( y + 1 ) -> ( ph <-> th ) )
4 nn0ind.4
 |-  ( x = A -> ( ph <-> ta ) )
5 nn0ind.5
 |-  ps
6 nn0ind.6
 |-  ( y e. NN0 -> ( ch -> th ) )
7 elnn0z
 |-  ( A e. NN0 <-> ( A e. ZZ /\ 0 <_ A ) )
8 0z
 |-  0 e. ZZ
9 5 a1i
 |-  ( 0 e. ZZ -> ps )
10 elnn0z
 |-  ( y e. NN0 <-> ( y e. ZZ /\ 0 <_ y ) )
11 10 6 sylbir
 |-  ( ( y e. ZZ /\ 0 <_ y ) -> ( ch -> th ) )
12 11 3adant1
 |-  ( ( 0 e. ZZ /\ y e. ZZ /\ 0 <_ y ) -> ( ch -> th ) )
13 1 2 3 4 9 12 uzind
 |-  ( ( 0 e. ZZ /\ A e. ZZ /\ 0 <_ A ) -> ta )
14 8 13 mp3an1
 |-  ( ( A e. ZZ /\ 0 <_ A ) -> ta )
15 7 14 sylbi
 |-  ( A e. NN0 -> ta )