Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0ind.1 | |- ( x = 0 -> ( ph <-> ps ) ) |
|
| nn0ind.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| nn0ind.3 | |- ( x = ( y + 1 ) -> ( ph <-> th ) ) |
||
| nn0ind.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| nn0ind.5 | |- ps |
||
| nn0ind.6 | |- ( y e. NN0 -> ( ch -> th ) ) |
||
| Assertion | nn0ind | |- ( A e. NN0 -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ind.1 | |- ( x = 0 -> ( ph <-> ps ) ) |
|
| 2 | nn0ind.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | nn0ind.3 | |- ( x = ( y + 1 ) -> ( ph <-> th ) ) |
|
| 4 | nn0ind.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | nn0ind.5 | |- ps |
|
| 6 | nn0ind.6 | |- ( y e. NN0 -> ( ch -> th ) ) |
|
| 7 | elnn0z | |- ( A e. NN0 <-> ( A e. ZZ /\ 0 <_ A ) ) |
|
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | 5 | a1i | |- ( 0 e. ZZ -> ps ) |
| 10 | elnn0z | |- ( y e. NN0 <-> ( y e. ZZ /\ 0 <_ y ) ) |
|
| 11 | 10 6 | sylbir | |- ( ( y e. ZZ /\ 0 <_ y ) -> ( ch -> th ) ) |
| 12 | 11 | 3adant1 | |- ( ( 0 e. ZZ /\ y e. ZZ /\ 0 <_ y ) -> ( ch -> th ) ) |
| 13 | 1 2 3 4 9 12 | uzind | |- ( ( 0 e. ZZ /\ A e. ZZ /\ 0 <_ A ) -> ta ) |
| 14 | 8 13 | mp3an1 | |- ( ( A e. ZZ /\ 0 <_ A ) -> ta ) |
| 15 | 7 14 | sylbi | |- ( A e. NN0 -> ta ) |