Step |
Hyp |
Ref |
Expression |
1 |
|
nn0indd.1 |
|- ( x = 0 -> ( ps <-> ch ) ) |
2 |
|
nn0indd.2 |
|- ( x = y -> ( ps <-> th ) ) |
3 |
|
nn0indd.3 |
|- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
4 |
|
nn0indd.4 |
|- ( x = A -> ( ps <-> et ) ) |
5 |
|
nn0indd.5 |
|- ( ph -> ch ) |
6 |
|
nn0indd.6 |
|- ( ( ( ph /\ y e. NN0 ) /\ th ) -> ta ) |
7 |
1
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
8 |
2
|
imbi2d |
|- ( x = y -> ( ( ph -> ps ) <-> ( ph -> th ) ) ) |
9 |
3
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ph -> ps ) <-> ( ph -> ta ) ) ) |
10 |
4
|
imbi2d |
|- ( x = A -> ( ( ph -> ps ) <-> ( ph -> et ) ) ) |
11 |
6
|
ex |
|- ( ( ph /\ y e. NN0 ) -> ( th -> ta ) ) |
12 |
11
|
expcom |
|- ( y e. NN0 -> ( ph -> ( th -> ta ) ) ) |
13 |
12
|
a2d |
|- ( y e. NN0 -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
14 |
7 8 9 10 5 13
|
nn0ind |
|- ( A e. NN0 -> ( ph -> et ) ) |
15 |
14
|
impcom |
|- ( ( ph /\ A e. NN0 ) -> et ) |