| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( N e. NN0 -> 2 e. RR ) | 
						
							| 4 | 1 3 | leloed |  |-  ( N e. NN0 -> ( N <_ 2 <-> ( N < 2 \/ N = 2 ) ) ) | 
						
							| 5 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 6 |  | 2z |  |-  2 e. ZZ | 
						
							| 7 |  | zltlem1 |  |-  ( ( N e. ZZ /\ 2 e. ZZ ) -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) | 
						
							| 8 | 5 6 7 | sylancl |  |-  ( N e. NN0 -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) | 
						
							| 9 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 10 | 9 | a1i |  |-  ( N e. NN0 -> ( 2 - 1 ) = 1 ) | 
						
							| 11 | 10 | breq2d |  |-  ( N e. NN0 -> ( N <_ ( 2 - 1 ) <-> N <_ 1 ) ) | 
						
							| 12 | 8 11 | bitrd |  |-  ( N e. NN0 -> ( N < 2 <-> N <_ 1 ) ) | 
						
							| 13 |  | 1red |  |-  ( N e. NN0 -> 1 e. RR ) | 
						
							| 14 | 1 13 | leloed |  |-  ( N e. NN0 -> ( N <_ 1 <-> ( N < 1 \/ N = 1 ) ) ) | 
						
							| 15 |  | nn0lt10b |  |-  ( N e. NN0 -> ( N < 1 <-> N = 0 ) ) | 
						
							| 16 |  | 3mix1 |  |-  ( N = 0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) | 
						
							| 17 | 15 16 | biimtrdi |  |-  ( N e. NN0 -> ( N < 1 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 18 | 17 | com12 |  |-  ( N < 1 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 19 |  | 3mix2 |  |-  ( N = 1 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) | 
						
							| 20 | 19 | a1d |  |-  ( N = 1 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 21 | 18 20 | jaoi |  |-  ( ( N < 1 \/ N = 1 ) -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 22 | 21 | com12 |  |-  ( N e. NN0 -> ( ( N < 1 \/ N = 1 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 23 | 14 22 | sylbid |  |-  ( N e. NN0 -> ( N <_ 1 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 24 | 12 23 | sylbid |  |-  ( N e. NN0 -> ( N < 2 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 25 | 24 | com12 |  |-  ( N < 2 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 26 |  | 3mix3 |  |-  ( N = 2 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) | 
						
							| 27 | 26 | a1d |  |-  ( N = 2 -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 28 | 25 27 | jaoi |  |-  ( ( N < 2 \/ N = 2 ) -> ( N e. NN0 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 29 | 28 | com12 |  |-  ( N e. NN0 -> ( ( N < 2 \/ N = 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 30 | 4 29 | sylbid |  |-  ( N e. NN0 -> ( N <_ 2 -> ( N = 0 \/ N = 1 \/ N = 2 ) ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( N e. NN0 /\ N <_ 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |