Step |
Hyp |
Ref |
Expression |
1 |
|
nn0le2msqi.1 |
|- A e. NN0 |
2 |
|
nn0le2msqi.2 |
|- B e. NN0 |
3 |
1
|
nn0ge0i |
|- 0 <_ A |
4 |
2
|
nn0ge0i |
|- 0 <_ B |
5 |
1
|
nn0rei |
|- A e. RR |
6 |
2
|
nn0rei |
|- B e. RR |
7 |
5 6
|
le2sqi |
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) |
8 |
3 4 7
|
mp2an |
|- ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) |
9 |
1
|
nn0cni |
|- A e. CC |
10 |
9
|
sqvali |
|- ( A ^ 2 ) = ( A x. A ) |
11 |
2
|
nn0cni |
|- B e. CC |
12 |
11
|
sqvali |
|- ( B ^ 2 ) = ( B x. B ) |
13 |
10 12
|
breq12i |
|- ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) |
14 |
8 13
|
bitri |
|- ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) |