| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0le2msqi.1 |  |-  A e. NN0 | 
						
							| 2 |  | nn0le2msqi.2 |  |-  B e. NN0 | 
						
							| 3 | 1 | nn0ge0i |  |-  0 <_ A | 
						
							| 4 | 2 | nn0ge0i |  |-  0 <_ B | 
						
							| 5 | 1 | nn0rei |  |-  A e. RR | 
						
							| 6 | 2 | nn0rei |  |-  B e. RR | 
						
							| 7 | 5 6 | le2sqi |  |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) | 
						
							| 8 | 3 4 7 | mp2an |  |-  ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) | 
						
							| 9 | 1 | nn0cni |  |-  A e. CC | 
						
							| 10 | 9 | sqvali |  |-  ( A ^ 2 ) = ( A x. A ) | 
						
							| 11 | 2 | nn0cni |  |-  B e. CC | 
						
							| 12 | 11 | sqvali |  |-  ( B ^ 2 ) = ( B x. B ) | 
						
							| 13 | 10 12 | breq12i |  |-  ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) | 
						
							| 14 | 8 13 | bitri |  |-  ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) |