| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) | 
						
							| 2 |  | nnge1 |  |-  ( B e. NN -> 1 <_ B ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. NN /\ B e. NN ) -> 1 <_ B ) | 
						
							| 4 |  | nnrp |  |-  ( B e. NN -> B e. RR+ ) | 
						
							| 5 |  | nnledivrp |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( A e. NN /\ B e. NN ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( ( A e. NN /\ B e. NN ) -> ( A / B ) <_ A ) | 
						
							| 8 | 7 | ex |  |-  ( A e. NN -> ( B e. NN -> ( A / B ) <_ A ) ) | 
						
							| 9 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 10 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 11 | 9 10 | jca |  |-  ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A = 0 /\ B e. NN ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 13 |  | div0 |  |-  ( ( B e. CC /\ B =/= 0 ) -> ( 0 / B ) = 0 ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( A = 0 /\ B e. NN ) -> ( 0 / B ) = 0 ) | 
						
							| 15 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 16 | 14 15 | eqbrtrdi |  |-  ( ( A = 0 /\ B e. NN ) -> ( 0 / B ) <_ 0 ) | 
						
							| 17 |  | oveq1 |  |-  ( A = 0 -> ( A / B ) = ( 0 / B ) ) | 
						
							| 18 |  | id |  |-  ( A = 0 -> A = 0 ) | 
						
							| 19 | 17 18 | breq12d |  |-  ( A = 0 -> ( ( A / B ) <_ A <-> ( 0 / B ) <_ 0 ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A = 0 /\ B e. NN ) -> ( ( A / B ) <_ A <-> ( 0 / B ) <_ 0 ) ) | 
						
							| 21 | 16 20 | mpbird |  |-  ( ( A = 0 /\ B e. NN ) -> ( A / B ) <_ A ) | 
						
							| 22 | 21 | ex |  |-  ( A = 0 -> ( B e. NN -> ( A / B ) <_ A ) ) | 
						
							| 23 | 8 22 | jaoi |  |-  ( ( A e. NN \/ A = 0 ) -> ( B e. NN -> ( A / B ) <_ A ) ) | 
						
							| 24 | 1 23 | sylbi |  |-  ( A e. NN0 -> ( B e. NN -> ( A / B ) <_ A ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) <_ A ) |