Metamath Proof Explorer


Theorem nn0lele2xi

Description: 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0lele2xi.1
|- M e. NN0
nn0lele2xi.2
|- N e. NN0
Assertion nn0lele2xi
|- ( N <_ M -> N <_ ( 2 x. M ) )

Proof

Step Hyp Ref Expression
1 nn0lele2xi.1
 |-  M e. NN0
2 nn0lele2xi.2
 |-  N e. NN0
3 1 nn0le2xi
 |-  M <_ ( 2 x. M )
4 2 nn0rei
 |-  N e. RR
5 1 nn0rei
 |-  M e. RR
6 2re
 |-  2 e. RR
7 6 5 remulcli
 |-  ( 2 x. M ) e. RR
8 4 5 7 letri
 |-  ( ( N <_ M /\ M <_ ( 2 x. M ) ) -> N <_ ( 2 x. M ) )
9 3 8 mpan2
 |-  ( N <_ M -> N <_ ( 2 x. M ) )