Step |
Hyp |
Ref |
Expression |
1 |
|
nn0n0n1ge2 |
|- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) |
2 |
1
|
3expib |
|- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) ) |
3 |
|
ianor |
|- ( -. ( N =/= 0 /\ N =/= 1 ) <-> ( -. N =/= 0 \/ -. N =/= 1 ) ) |
4 |
|
nne |
|- ( -. N =/= 0 <-> N = 0 ) |
5 |
|
nne |
|- ( -. N =/= 1 <-> N = 1 ) |
6 |
4 5
|
orbi12i |
|- ( ( -. N =/= 0 \/ -. N =/= 1 ) <-> ( N = 0 \/ N = 1 ) ) |
7 |
3 6
|
bitri |
|- ( -. ( N =/= 0 /\ N =/= 1 ) <-> ( N = 0 \/ N = 1 ) ) |
8 |
|
2pos |
|- 0 < 2 |
9 |
|
breq1 |
|- ( N = 0 -> ( N < 2 <-> 0 < 2 ) ) |
10 |
8 9
|
mpbiri |
|- ( N = 0 -> N < 2 ) |
11 |
10
|
a1d |
|- ( N = 0 -> ( N e. NN0 -> N < 2 ) ) |
12 |
|
1lt2 |
|- 1 < 2 |
13 |
|
breq1 |
|- ( N = 1 -> ( N < 2 <-> 1 < 2 ) ) |
14 |
12 13
|
mpbiri |
|- ( N = 1 -> N < 2 ) |
15 |
14
|
a1d |
|- ( N = 1 -> ( N e. NN0 -> N < 2 ) ) |
16 |
11 15
|
jaoi |
|- ( ( N = 0 \/ N = 1 ) -> ( N e. NN0 -> N < 2 ) ) |
17 |
16
|
impcom |
|- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> N < 2 ) |
18 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
19 |
|
2re |
|- 2 e. RR |
20 |
18 19
|
jctir |
|- ( N e. NN0 -> ( N e. RR /\ 2 e. RR ) ) |
21 |
20
|
adantr |
|- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> ( N e. RR /\ 2 e. RR ) ) |
22 |
|
ltnle |
|- ( ( N e. RR /\ 2 e. RR ) -> ( N < 2 <-> -. 2 <_ N ) ) |
23 |
21 22
|
syl |
|- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> ( N < 2 <-> -. 2 <_ N ) ) |
24 |
17 23
|
mpbid |
|- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> -. 2 <_ N ) |
25 |
24
|
ex |
|- ( N e. NN0 -> ( ( N = 0 \/ N = 1 ) -> -. 2 <_ N ) ) |
26 |
7 25
|
syl5bi |
|- ( N e. NN0 -> ( -. ( N =/= 0 /\ N =/= 1 ) -> -. 2 <_ N ) ) |
27 |
2 26
|
impcon4bid |
|- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |