Description: A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0nlt0 | |- ( A e. NN0 -> -. A < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 4 | lenlt | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) |
|
| 5 | 2 3 4 | sylancr | |- ( A e. NN0 -> ( 0 <_ A <-> -. A < 0 ) ) |
| 6 | 1 5 | mpbid | |- ( A e. NN0 -> -. A < 0 ) |