Metamath Proof Explorer


Theorem nn0nlt0

Description: A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion nn0nlt0
|- ( A e. NN0 -> -. A < 0 )

Proof

Step Hyp Ref Expression
1 nn0ge0
 |-  ( A e. NN0 -> 0 <_ A )
2 0re
 |-  0 e. RR
3 nn0re
 |-  ( A e. NN0 -> A e. RR )
4 lenlt
 |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) )
5 2 3 4 sylancr
 |-  ( A e. NN0 -> ( 0 <_ A <-> -. A < 0 ) )
6 1 5 mpbid
 |-  ( A e. NN0 -> -. A < 0 )