Metamath Proof Explorer


Theorem nn0nnaddcl

Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005)

Ref Expression
Assertion nn0nnaddcl
|- ( ( M e. NN0 /\ N e. NN ) -> ( M + N ) e. NN )

Proof

Step Hyp Ref Expression
1 nncn
 |-  ( N e. NN -> N e. CC )
2 nn0cn
 |-  ( M e. NN0 -> M e. CC )
3 addcom
 |-  ( ( N e. CC /\ M e. CC ) -> ( N + M ) = ( M + N ) )
4 1 2 3 syl2an
 |-  ( ( N e. NN /\ M e. NN0 ) -> ( N + M ) = ( M + N ) )
5 nnnn0addcl
 |-  ( ( N e. NN /\ M e. NN0 ) -> ( N + M ) e. NN )
6 4 5 eqeltrrd
 |-  ( ( N e. NN /\ M e. NN0 ) -> ( M + N ) e. NN )
7 6 ancoms
 |-  ( ( M e. NN0 /\ N e. NN ) -> ( M + N ) e. NN )