| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnnne0 |
|- ( L e. NN <-> ( L e. NN0 /\ L =/= 0 ) ) |
| 2 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
| 3 |
2
|
adantr |
|- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> K e. RR ) |
| 4 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
| 5 |
4
|
ad2antrl |
|- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> L e. RR ) |
| 6 |
|
simprr |
|- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> L =/= 0 ) |
| 7 |
3 5 6
|
3jca |
|- ( ( K e. NN0 /\ ( L e. NN0 /\ L =/= 0 ) ) -> ( K e. RR /\ L e. RR /\ L =/= 0 ) ) |
| 8 |
1 7
|
sylan2b |
|- ( ( K e. NN0 /\ L e. NN ) -> ( K e. RR /\ L e. RR /\ L =/= 0 ) ) |
| 9 |
|
redivcl |
|- ( ( K e. RR /\ L e. RR /\ L =/= 0 ) -> ( K / L ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ( K e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |