Step |
Hyp |
Ref |
Expression |
1 |
|
nn0o1gt2 |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
2 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
3 |
2
|
oveq1i |
|- ( ( 1 - 1 ) / 2 ) = ( 0 / 2 ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
2ne0 |
|- 2 =/= 0 |
6 |
4 5
|
div0i |
|- ( 0 / 2 ) = 0 |
7 |
3 6
|
eqtri |
|- ( ( 1 - 1 ) / 2 ) = 0 |
8 |
|
0nn0 |
|- 0 e. NN0 |
9 |
7 8
|
eqeltri |
|- ( ( 1 - 1 ) / 2 ) e. NN0 |
10 |
|
oveq1 |
|- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
11 |
10
|
oveq1d |
|- ( N = 1 -> ( ( N - 1 ) / 2 ) = ( ( 1 - 1 ) / 2 ) ) |
12 |
11
|
eleq1d |
|- ( N = 1 -> ( ( ( N - 1 ) / 2 ) e. NN0 <-> ( ( 1 - 1 ) / 2 ) e. NN0 ) ) |
13 |
12
|
adantr |
|- ( ( N = 1 /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( ( N - 1 ) / 2 ) e. NN0 <-> ( ( 1 - 1 ) / 2 ) e. NN0 ) ) |
14 |
9 13
|
mpbiri |
|- ( ( N = 1 /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
15 |
14
|
ex |
|- ( N = 1 -> ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
16 |
|
2z |
|- 2 e. ZZ |
17 |
16
|
a1i |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> 2 e. ZZ ) |
18 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
19 |
18
|
ad2antrl |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> N e. ZZ ) |
20 |
|
2re |
|- 2 e. RR |
21 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
22 |
|
ltle |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 < N -> 2 <_ N ) ) |
23 |
20 21 22
|
sylancr |
|- ( N e. NN0 -> ( 2 < N -> 2 <_ N ) ) |
24 |
23
|
adantr |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( 2 < N -> 2 <_ N ) ) |
25 |
24
|
impcom |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> 2 <_ N ) |
26 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) |
27 |
17 19 25 26
|
syl3anbrc |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> N e. ( ZZ>= ` 2 ) ) |
28 |
|
simprr |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( N + 1 ) / 2 ) e. NN0 ) |
29 |
27 28
|
jca |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) |
30 |
|
nno |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) |
31 |
|
nnnn0 |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. NN0 ) |
32 |
29 30 31
|
3syl |
|- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
33 |
32
|
ex |
|- ( 2 < N -> ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
34 |
15 33
|
jaoi |
|- ( ( N = 1 \/ 2 < N ) -> ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
35 |
1 34
|
mpcom |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |