| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
elnnnn0c |
|- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) ) |
| 3 |
|
1red |
|- ( N e. NN0 -> 1 e. RR ) |
| 4 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 5 |
3 4
|
leloed |
|- ( N e. NN0 -> ( 1 <_ N <-> ( 1 < N \/ 1 = N ) ) ) |
| 6 |
|
1zzd |
|- ( N e. NN0 -> 1 e. ZZ ) |
| 7 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 8 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ N e. ZZ ) -> ( 1 < N <-> ( 1 + 1 ) <_ N ) ) |
| 9 |
6 7 8
|
syl2anc |
|- ( N e. NN0 -> ( 1 < N <-> ( 1 + 1 ) <_ N ) ) |
| 10 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 11 |
10
|
breq1i |
|- ( ( 1 + 1 ) <_ N <-> 2 <_ N ) |
| 12 |
11
|
a1i |
|- ( N e. NN0 -> ( ( 1 + 1 ) <_ N <-> 2 <_ N ) ) |
| 13 |
|
2re |
|- 2 e. RR |
| 14 |
13
|
a1i |
|- ( N e. NN0 -> 2 e. RR ) |
| 15 |
14 4
|
leloed |
|- ( N e. NN0 -> ( 2 <_ N <-> ( 2 < N \/ 2 = N ) ) ) |
| 16 |
9 12 15
|
3bitrd |
|- ( N e. NN0 -> ( 1 < N <-> ( 2 < N \/ 2 = N ) ) ) |
| 17 |
|
olc |
|- ( 2 < N -> ( N = 1 \/ 2 < N ) ) |
| 18 |
17
|
2a1d |
|- ( 2 < N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 19 |
|
oveq1 |
|- ( N = 2 -> ( N + 1 ) = ( 2 + 1 ) ) |
| 20 |
19
|
oveq1d |
|- ( N = 2 -> ( ( N + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 21 |
20
|
eqcoms |
|- ( 2 = N -> ( ( N + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 22 |
21
|
adantl |
|- ( ( N e. NN0 /\ 2 = N ) -> ( ( N + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 23 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 24 |
23
|
oveq1i |
|- ( ( 2 + 1 ) / 2 ) = ( 3 / 2 ) |
| 25 |
22 24
|
eqtrdi |
|- ( ( N e. NN0 /\ 2 = N ) -> ( ( N + 1 ) / 2 ) = ( 3 / 2 ) ) |
| 26 |
25
|
eleq1d |
|- ( ( N e. NN0 /\ 2 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( 3 / 2 ) e. NN0 ) ) |
| 27 |
|
3halfnz |
|- -. ( 3 / 2 ) e. ZZ |
| 28 |
|
nn0z |
|- ( ( 3 / 2 ) e. NN0 -> ( 3 / 2 ) e. ZZ ) |
| 29 |
28
|
pm2.24d |
|- ( ( 3 / 2 ) e. NN0 -> ( -. ( 3 / 2 ) e. ZZ -> ( N = 1 \/ 2 < N ) ) ) |
| 30 |
27 29
|
mpi |
|- ( ( 3 / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) |
| 31 |
26 30
|
biimtrdi |
|- ( ( N e. NN0 /\ 2 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 32 |
31
|
expcom |
|- ( 2 = N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 33 |
18 32
|
jaoi |
|- ( ( 2 < N \/ 2 = N ) -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 34 |
33
|
com12 |
|- ( N e. NN0 -> ( ( 2 < N \/ 2 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 35 |
16 34
|
sylbid |
|- ( N e. NN0 -> ( 1 < N -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 36 |
35
|
com12 |
|- ( 1 < N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 37 |
|
orc |
|- ( N = 1 -> ( N = 1 \/ 2 < N ) ) |
| 38 |
37
|
eqcoms |
|- ( 1 = N -> ( N = 1 \/ 2 < N ) ) |
| 39 |
38
|
2a1d |
|- ( 1 = N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 40 |
36 39
|
jaoi |
|- ( ( 1 < N \/ 1 = N ) -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 41 |
40
|
com12 |
|- ( N e. NN0 -> ( ( 1 < N \/ 1 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 42 |
5 41
|
sylbid |
|- ( N e. NN0 -> ( 1 <_ N -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( N e. NN0 /\ 1 <_ N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 44 |
2 43
|
sylbi |
|- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 45 |
|
oveq1 |
|- ( N = 0 -> ( N + 1 ) = ( 0 + 1 ) ) |
| 46 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 47 |
45 46
|
eqtrdi |
|- ( N = 0 -> ( N + 1 ) = 1 ) |
| 48 |
47
|
oveq1d |
|- ( N = 0 -> ( ( N + 1 ) / 2 ) = ( 1 / 2 ) ) |
| 49 |
48
|
eleq1d |
|- ( N = 0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( 1 / 2 ) e. NN0 ) ) |
| 50 |
|
halfnz |
|- -. ( 1 / 2 ) e. ZZ |
| 51 |
|
nn0z |
|- ( ( 1 / 2 ) e. NN0 -> ( 1 / 2 ) e. ZZ ) |
| 52 |
51
|
pm2.24d |
|- ( ( 1 / 2 ) e. NN0 -> ( -. ( 1 / 2 ) e. ZZ -> ( N = 1 \/ 2 < N ) ) ) |
| 53 |
50 52
|
mpi |
|- ( ( 1 / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) |
| 54 |
49 53
|
biimtrdi |
|- ( N = 0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 55 |
44 54
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 56 |
1 55
|
sylbi |
|- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 57 |
56
|
imp |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |