| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0o |  |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) | 
						
							| 2 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 3 |  | xp1d2m1eqxm1d2 |  |-  ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( N e. CC -> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( N e. NN0 -> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) | 
						
							| 6 |  | peano2cnm |  |-  ( N e. CC -> ( N - 1 ) e. CC ) | 
						
							| 7 | 2 6 | syl |  |-  ( N e. NN0 -> ( N - 1 ) e. CC ) | 
						
							| 8 | 7 | halfcld |  |-  ( N e. NN0 -> ( ( N - 1 ) / 2 ) e. CC ) | 
						
							| 9 |  | 1cnd |  |-  ( N e. NN0 -> 1 e. CC ) | 
						
							| 10 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 11 | 10 | nn0cnd |  |-  ( N e. NN0 -> ( N + 1 ) e. CC ) | 
						
							| 12 | 11 | halfcld |  |-  ( N e. NN0 -> ( ( N + 1 ) / 2 ) e. CC ) | 
						
							| 13 | 8 9 12 | addlsub |  |-  ( N e. NN0 -> ( ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) <-> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) ) | 
						
							| 14 | 5 13 | mpbird |  |-  ( N e. NN0 -> ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) ) | 
						
							| 16 |  | peano2nn0 |  |-  ( ( ( N - 1 ) / 2 ) e. NN0 -> ( ( ( N - 1 ) / 2 ) + 1 ) e. NN0 ) | 
						
							| 17 | 16 | adantl |  |-  ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( ( N - 1 ) / 2 ) + 1 ) e. NN0 ) | 
						
							| 18 | 15 17 | eqeltrrd |  |-  ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( N + 1 ) / 2 ) e. NN0 ) | 
						
							| 19 | 1 18 | impbida |  |-  ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |