Step |
Hyp |
Ref |
Expression |
1 |
|
nn0o |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
2 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
3 |
|
xp1d2m1eqxm1d2 |
|- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
4 |
3
|
eqcomd |
|- ( N e. CC -> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) |
5 |
2 4
|
syl |
|- ( N e. NN0 -> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) |
6 |
|
peano2cnm |
|- ( N e. CC -> ( N - 1 ) e. CC ) |
7 |
2 6
|
syl |
|- ( N e. NN0 -> ( N - 1 ) e. CC ) |
8 |
7
|
halfcld |
|- ( N e. NN0 -> ( ( N - 1 ) / 2 ) e. CC ) |
9 |
|
1cnd |
|- ( N e. NN0 -> 1 e. CC ) |
10 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( N e. NN0 -> ( N + 1 ) e. CC ) |
12 |
11
|
halfcld |
|- ( N e. NN0 -> ( ( N + 1 ) / 2 ) e. CC ) |
13 |
8 9 12
|
addlsub |
|- ( N e. NN0 -> ( ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) <-> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) ) |
14 |
5 13
|
mpbird |
|- ( N e. NN0 -> ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) ) |
15 |
14
|
adantr |
|- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) ) |
16 |
|
peano2nn0 |
|- ( ( ( N - 1 ) / 2 ) e. NN0 -> ( ( ( N - 1 ) / 2 ) + 1 ) e. NN0 ) |
17 |
16
|
adantl |
|- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( ( N - 1 ) / 2 ) + 1 ) e. NN0 ) |
18 |
15 17
|
eqeltrrd |
|- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( N + 1 ) / 2 ) e. NN0 ) |
19 |
1 18
|
impbida |
|- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |