Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( A + B ) = ( if ( A e. NN0 , A , 0 ) + B ) ) |
2 |
1
|
oveq1d |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( ( A + B ) ^ 2 ) = ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) ) |
3 |
2
|
oveq1d |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) + B ) ) |
4 |
3
|
eqeq1d |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) ) ) |
5 |
|
eqeq1 |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( A = C <-> if ( A e. NN0 , A , 0 ) = C ) ) |
6 |
5
|
anbi1d |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( ( A = C /\ B = D ) <-> ( if ( A e. NN0 , A , 0 ) = C /\ B = D ) ) ) |
7 |
4 6
|
bibi12d |
|- ( A = if ( A e. NN0 , A , 0 ) -> ( ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( A = C /\ B = D ) ) <-> ( ( ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( if ( A e. NN0 , A , 0 ) = C /\ B = D ) ) ) ) |
8 |
|
oveq2 |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( if ( A e. NN0 , A , 0 ) + B ) = ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ) |
9 |
8
|
oveq1d |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) = ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) ) |
10 |
|
id |
|- ( B = if ( B e. NN0 , B , 0 ) -> B = if ( B e. NN0 , B , 0 ) ) |
11 |
9 10
|
oveq12d |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) + B ) = ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) ) |
12 |
11
|
eqeq1d |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( ( ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( C + D ) ^ 2 ) + D ) ) ) |
13 |
|
eqeq1 |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( B = D <-> if ( B e. NN0 , B , 0 ) = D ) ) |
14 |
13
|
anbi2d |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( ( if ( A e. NN0 , A , 0 ) = C /\ B = D ) <-> ( if ( A e. NN0 , A , 0 ) = C /\ if ( B e. NN0 , B , 0 ) = D ) ) ) |
15 |
12 14
|
bibi12d |
|- ( B = if ( B e. NN0 , B , 0 ) -> ( ( ( ( ( if ( A e. NN0 , A , 0 ) + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( if ( A e. NN0 , A , 0 ) = C /\ B = D ) ) <-> ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( if ( A e. NN0 , A , 0 ) = C /\ if ( B e. NN0 , B , 0 ) = D ) ) ) ) |
16 |
|
oveq1 |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( C + D ) = ( if ( C e. NN0 , C , 0 ) + D ) ) |
17 |
16
|
oveq1d |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( ( C + D ) ^ 2 ) = ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) ) |
18 |
17
|
oveq1d |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( ( ( C + D ) ^ 2 ) + D ) = ( ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) + D ) ) |
19 |
18
|
eqeq2d |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) + D ) ) ) |
20 |
|
eqeq2 |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( if ( A e. NN0 , A , 0 ) = C <-> if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) ) ) |
21 |
20
|
anbi1d |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( ( if ( A e. NN0 , A , 0 ) = C /\ if ( B e. NN0 , B , 0 ) = D ) <-> ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = D ) ) ) |
22 |
19 21
|
bibi12d |
|- ( C = if ( C e. NN0 , C , 0 ) -> ( ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( if ( A e. NN0 , A , 0 ) = C /\ if ( B e. NN0 , B , 0 ) = D ) ) <-> ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) + D ) <-> ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = D ) ) ) ) |
23 |
|
oveq2 |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( if ( C e. NN0 , C , 0 ) + D ) = ( if ( C e. NN0 , C , 0 ) + if ( D e. NN0 , D , 0 ) ) ) |
24 |
23
|
oveq1d |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) = ( ( if ( C e. NN0 , C , 0 ) + if ( D e. NN0 , D , 0 ) ) ^ 2 ) ) |
25 |
|
id |
|- ( D = if ( D e. NN0 , D , 0 ) -> D = if ( D e. NN0 , D , 0 ) ) |
26 |
24 25
|
oveq12d |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) + D ) = ( ( ( if ( C e. NN0 , C , 0 ) + if ( D e. NN0 , D , 0 ) ) ^ 2 ) + if ( D e. NN0 , D , 0 ) ) ) |
27 |
26
|
eqeq2d |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) + D ) <-> ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + if ( D e. NN0 , D , 0 ) ) ^ 2 ) + if ( D e. NN0 , D , 0 ) ) ) ) |
28 |
|
eqeq2 |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( if ( B e. NN0 , B , 0 ) = D <-> if ( B e. NN0 , B , 0 ) = if ( D e. NN0 , D , 0 ) ) ) |
29 |
28
|
anbi2d |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = D ) <-> ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = if ( D e. NN0 , D , 0 ) ) ) ) |
30 |
27 29
|
bibi12d |
|- ( D = if ( D e. NN0 , D , 0 ) -> ( ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + D ) ^ 2 ) + D ) <-> ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = D ) ) <-> ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + if ( D e. NN0 , D , 0 ) ) ^ 2 ) + if ( D e. NN0 , D , 0 ) ) <-> ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = if ( D e. NN0 , D , 0 ) ) ) ) ) |
31 |
|
0nn0 |
|- 0 e. NN0 |
32 |
31
|
elimel |
|- if ( A e. NN0 , A , 0 ) e. NN0 |
33 |
31
|
elimel |
|- if ( B e. NN0 , B , 0 ) e. NN0 |
34 |
31
|
elimel |
|- if ( C e. NN0 , C , 0 ) e. NN0 |
35 |
31
|
elimel |
|- if ( D e. NN0 , D , 0 ) e. NN0 |
36 |
32 33 34 35
|
nn0opth2i |
|- ( ( ( ( if ( A e. NN0 , A , 0 ) + if ( B e. NN0 , B , 0 ) ) ^ 2 ) + if ( B e. NN0 , B , 0 ) ) = ( ( ( if ( C e. NN0 , C , 0 ) + if ( D e. NN0 , D , 0 ) ) ^ 2 ) + if ( D e. NN0 , D , 0 ) ) <-> ( if ( A e. NN0 , A , 0 ) = if ( C e. NN0 , C , 0 ) /\ if ( B e. NN0 , B , 0 ) = if ( D e. NN0 , D , 0 ) ) ) |
37 |
7 15 22 30 36
|
dedth4h |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( C e. NN0 /\ D e. NN0 ) ) -> ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( A = C /\ B = D ) ) ) |