| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0opth.1 |
|- A e. NN0 |
| 2 |
|
nn0opth.2 |
|- B e. NN0 |
| 3 |
|
nn0opth.3 |
|- C e. NN0 |
| 4 |
|
nn0opth.4 |
|- D e. NN0 |
| 5 |
1
|
nn0cni |
|- A e. CC |
| 6 |
2
|
nn0cni |
|- B e. CC |
| 7 |
5 6
|
addcli |
|- ( A + B ) e. CC |
| 8 |
7
|
sqvali |
|- ( ( A + B ) ^ 2 ) = ( ( A + B ) x. ( A + B ) ) |
| 9 |
8
|
oveq1i |
|- ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + B ) |
| 10 |
3
|
nn0cni |
|- C e. CC |
| 11 |
4
|
nn0cni |
|- D e. CC |
| 12 |
10 11
|
addcli |
|- ( C + D ) e. CC |
| 13 |
12
|
sqvali |
|- ( ( C + D ) ^ 2 ) = ( ( C + D ) x. ( C + D ) ) |
| 14 |
13
|
oveq1i |
|- ( ( ( C + D ) ^ 2 ) + D ) = ( ( ( C + D ) x. ( C + D ) ) + D ) |
| 15 |
9 14
|
eqeq12i |
|- ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
| 16 |
1 2 3 4
|
nn0opthi |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) <-> ( A = C /\ B = D ) ) |
| 17 |
15 16
|
bitri |
|- ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( A = C /\ B = D ) ) |