Step |
Hyp |
Ref |
Expression |
1 |
|
nn0opth.1 |
|- A e. NN0 |
2 |
|
nn0opth.2 |
|- B e. NN0 |
3 |
|
nn0opth.3 |
|- C e. NN0 |
4 |
|
nn0opth.4 |
|- D e. NN0 |
5 |
1 2
|
nn0addcli |
|- ( A + B ) e. NN0 |
6 |
5
|
nn0rei |
|- ( A + B ) e. RR |
7 |
3 4
|
nn0addcli |
|- ( C + D ) e. NN0 |
8 |
7
|
nn0rei |
|- ( C + D ) e. RR |
9 |
6 8
|
lttri2i |
|- ( ( A + B ) =/= ( C + D ) <-> ( ( A + B ) < ( C + D ) \/ ( C + D ) < ( A + B ) ) ) |
10 |
1 2 7 4
|
nn0opthlem2 |
|- ( ( A + B ) < ( C + D ) -> ( ( ( C + D ) x. ( C + D ) ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |
11 |
10
|
necomd |
|- ( ( A + B ) < ( C + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
12 |
3 4 5 2
|
nn0opthlem2 |
|- ( ( C + D ) < ( A + B ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
13 |
11 12
|
jaoi |
|- ( ( ( A + B ) < ( C + D ) \/ ( C + D ) < ( A + B ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
14 |
9 13
|
sylbi |
|- ( ( A + B ) =/= ( C + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) =/= ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
15 |
14
|
necon4i |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( A + B ) = ( C + D ) ) |
16 |
|
id |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
17 |
15 15
|
oveq12d |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( A + B ) x. ( A + B ) ) = ( ( C + D ) x. ( C + D ) ) ) |
18 |
17
|
oveq1d |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( ( A + B ) x. ( A + B ) ) + D ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
19 |
16 18
|
eqtr4d |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + D ) ) |
20 |
5
|
nn0cni |
|- ( A + B ) e. CC |
21 |
20 20
|
mulcli |
|- ( ( A + B ) x. ( A + B ) ) e. CC |
22 |
2
|
nn0cni |
|- B e. CC |
23 |
4
|
nn0cni |
|- D e. CC |
24 |
21 22 23
|
addcani |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + D ) <-> B = D ) |
25 |
19 24
|
sylib |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> B = D ) |
26 |
25
|
oveq2d |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( C + B ) = ( C + D ) ) |
27 |
15 26
|
eqtr4d |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( A + B ) = ( C + B ) ) |
28 |
1
|
nn0cni |
|- A e. CC |
29 |
3
|
nn0cni |
|- C e. CC |
30 |
28 29 22
|
addcan2i |
|- ( ( A + B ) = ( C + B ) <-> A = C ) |
31 |
27 30
|
sylib |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> A = C ) |
32 |
31 25
|
jca |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) -> ( A = C /\ B = D ) ) |
33 |
|
oveq12 |
|- ( ( A = C /\ B = D ) -> ( A + B ) = ( C + D ) ) |
34 |
33 33
|
oveq12d |
|- ( ( A = C /\ B = D ) -> ( ( A + B ) x. ( A + B ) ) = ( ( C + D ) x. ( C + D ) ) ) |
35 |
|
simpr |
|- ( ( A = C /\ B = D ) -> B = D ) |
36 |
34 35
|
oveq12d |
|- ( ( A = C /\ B = D ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) |
37 |
32 36
|
impbii |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) <-> ( A = C /\ B = D ) ) |