Step |
Hyp |
Ref |
Expression |
1 |
|
nn0opth.1 |
|- A e. NN0 |
2 |
|
nn0opth.2 |
|- B e. NN0 |
3 |
|
nn0opth.3 |
|- C e. NN0 |
4 |
|
nn0opth.4 |
|- D e. NN0 |
5 |
1 2
|
nn0addcli |
|- ( A + B ) e. NN0 |
6 |
5 3
|
nn0opthlem1 |
|- ( ( A + B ) < C <-> ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) ) |
7 |
2
|
nn0rei |
|- B e. RR |
8 |
7 1
|
nn0addge2i |
|- B <_ ( A + B ) |
9 |
5 2
|
nn0lele2xi |
|- ( B <_ ( A + B ) -> B <_ ( 2 x. ( A + B ) ) ) |
10 |
|
2re |
|- 2 e. RR |
11 |
5
|
nn0rei |
|- ( A + B ) e. RR |
12 |
10 11
|
remulcli |
|- ( 2 x. ( A + B ) ) e. RR |
13 |
11 11
|
remulcli |
|- ( ( A + B ) x. ( A + B ) ) e. RR |
14 |
7 12 13
|
leadd2i |
|- ( B <_ ( 2 x. ( A + B ) ) <-> ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) ) |
15 |
9 14
|
sylib |
|- ( B <_ ( A + B ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) ) |
16 |
8 15
|
ax-mp |
|- ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) |
17 |
13 7
|
readdcli |
|- ( ( ( A + B ) x. ( A + B ) ) + B ) e. RR |
18 |
13 12
|
readdcli |
|- ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) e. RR |
19 |
3
|
nn0rei |
|- C e. RR |
20 |
19 19
|
remulcli |
|- ( C x. C ) e. RR |
21 |
17 18 20
|
lelttri |
|- ( ( ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) /\ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) |
22 |
16 21
|
mpan |
|- ( ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) |
23 |
6 22
|
sylbi |
|- ( ( A + B ) < C -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) |
24 |
20 4
|
nn0addge1i |
|- ( C x. C ) <_ ( ( C x. C ) + D ) |
25 |
4
|
nn0rei |
|- D e. RR |
26 |
20 25
|
readdcli |
|- ( ( C x. C ) + D ) e. RR |
27 |
17 20 26
|
ltletri |
|- ( ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) /\ ( C x. C ) <_ ( ( C x. C ) + D ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) ) |
28 |
24 27
|
mpan2 |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) ) |
29 |
17 26
|
ltnei |
|- ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |
30 |
23 28 29
|
3syl |
|- ( ( A + B ) < C -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |