| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ltp1le |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K < N <-> ( K + 1 ) <_ N ) ) | 
						
							| 2 | 1 | biimp3ar |  |-  ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K < N ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> K e. NN0 ) | 
						
							| 4 |  | simpr |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> N e. NN0 ) | 
						
							| 6 |  | nn0ge0 |  |-  ( K e. NN0 -> 0 <_ K ) | 
						
							| 7 | 6 | adantr |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> 0 <_ K ) | 
						
							| 8 |  | 0re |  |-  0 e. RR | 
						
							| 9 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 10 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 11 |  | lelttr |  |-  ( ( 0 e. RR /\ K e. RR /\ N e. RR ) -> ( ( 0 <_ K /\ K < N ) -> 0 < N ) ) | 
						
							| 12 | 8 9 10 11 | mp3an3an |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( ( 0 <_ K /\ K < N ) -> 0 < N ) ) | 
						
							| 13 | 7 12 | mpand |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K < N -> 0 < N ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> 0 < N ) | 
						
							| 15 |  | elnnnn0b |  |-  ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) | 
						
							| 16 | 5 14 15 | sylanbrc |  |-  ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> N e. NN ) | 
						
							| 17 | 16 | 3adantl3 |  |-  ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> N e. NN ) | 
						
							| 18 |  | simpr |  |-  ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> K < N ) | 
						
							| 19 | 3 17 18 | 3jca |  |-  ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) | 
						
							| 20 | 2 19 | mpdan |  |-  ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) | 
						
							| 21 |  | elfzo0 |  |-  ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K e. ( 0 ..^ N ) ) |