Step |
Hyp |
Ref |
Expression |
1 |
|
nn0ltp1le |
|- ( ( K e. NN0 /\ N e. NN0 ) -> ( K < N <-> ( K + 1 ) <_ N ) ) |
2 |
1
|
biimp3ar |
|- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K < N ) |
3 |
|
simpl1 |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> K e. NN0 ) |
4 |
|
simpr |
|- ( ( K e. NN0 /\ N e. NN0 ) -> N e. NN0 ) |
5 |
4
|
adantr |
|- ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> N e. NN0 ) |
6 |
|
nn0ge0 |
|- ( K e. NN0 -> 0 <_ K ) |
7 |
6
|
adantr |
|- ( ( K e. NN0 /\ N e. NN0 ) -> 0 <_ K ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
10 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
11 |
|
lelttr |
|- ( ( 0 e. RR /\ K e. RR /\ N e. RR ) -> ( ( 0 <_ K /\ K < N ) -> 0 < N ) ) |
12 |
8 9 10 11
|
mp3an3an |
|- ( ( K e. NN0 /\ N e. NN0 ) -> ( ( 0 <_ K /\ K < N ) -> 0 < N ) ) |
13 |
7 12
|
mpand |
|- ( ( K e. NN0 /\ N e. NN0 ) -> ( K < N -> 0 < N ) ) |
14 |
13
|
imp |
|- ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> 0 < N ) |
15 |
|
elnnnn0b |
|- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |
16 |
5 14 15
|
sylanbrc |
|- ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> N e. NN ) |
17 |
16
|
3adantl3 |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> N e. NN ) |
18 |
|
simpr |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> K < N ) |
19 |
3 17 18
|
3jca |
|- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
20 |
2 19
|
mpdan |
|- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
21 |
|
elfzo0 |
|- ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
22 |
20 21
|
sylibr |
|- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K e. ( 0 ..^ N ) ) |