| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 2 |  | elnn0 |  |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) | 
						
							| 3 |  | elnn0 |  |-  ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) | 
						
							| 4 |  | rppwr |  |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) | 
						
							| 5 | 4 | 3expia |  |-  ( ( A e. NN /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 6 |  | simp1l |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A = 0 ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = ( 0 ^ N ) ) | 
						
							| 8 |  | 0exp |  |-  ( N e. NN -> ( 0 ^ N ) = 0 ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 0 ^ N ) = 0 ) | 
						
							| 10 | 7 9 | eqtrd |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = 0 ) | 
						
							| 11 | 6 | oveq1d |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = ( 0 gcd B ) ) | 
						
							| 12 |  | simp3 |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = 1 ) | 
						
							| 13 |  | simp1r |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> B e. NN ) | 
						
							| 14 |  | nnz |  |-  ( B e. NN -> B e. ZZ ) | 
						
							| 15 |  | gcd0id |  |-  ( B e. ZZ -> ( 0 gcd B ) = ( abs ` B ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( B e. NN -> ( 0 gcd B ) = ( abs ` B ) ) | 
						
							| 17 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 18 |  | 0red |  |-  ( B e. NN -> 0 e. RR ) | 
						
							| 19 |  | nngt0 |  |-  ( B e. NN -> 0 < B ) | 
						
							| 20 | 18 17 19 | ltled |  |-  ( B e. NN -> 0 <_ B ) | 
						
							| 21 | 17 20 | absidd |  |-  ( B e. NN -> ( abs ` B ) = B ) | 
						
							| 22 | 16 21 | eqtrd |  |-  ( B e. NN -> ( 0 gcd B ) = B ) | 
						
							| 23 | 13 22 | syl |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 0 gcd B ) = B ) | 
						
							| 24 | 11 12 23 | 3eqtr3rd |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> B = 1 ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = ( 1 ^ N ) ) | 
						
							| 26 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 27 | 26 | 3ad2ant2 |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> N e. ZZ ) | 
						
							| 28 |  | 1exp |  |-  ( N e. ZZ -> ( 1 ^ N ) = 1 ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 1 ^ N ) = 1 ) | 
						
							| 30 | 25 29 | eqtrd |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = 1 ) | 
						
							| 31 | 10 30 | oveq12d |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 0 gcd 1 ) ) | 
						
							| 32 |  | 1z |  |-  1 e. ZZ | 
						
							| 33 |  | gcd0id |  |-  ( 1 e. ZZ -> ( 0 gcd 1 ) = ( abs ` 1 ) ) | 
						
							| 34 | 32 33 | ax-mp |  |-  ( 0 gcd 1 ) = ( abs ` 1 ) | 
						
							| 35 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 36 | 34 35 | eqtri |  |-  ( 0 gcd 1 ) = 1 | 
						
							| 37 | 31 36 | eqtrdi |  |-  ( ( ( A = 0 /\ B e. NN ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) | 
						
							| 38 | 37 | 3exp |  |-  ( ( A = 0 /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 39 |  | simp1r |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> B = 0 ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = ( A gcd 0 ) ) | 
						
							| 41 |  | simp3 |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd B ) = 1 ) | 
						
							| 42 |  | simp1l |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A e. NN ) | 
						
							| 43 | 42 | nnnn0d |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A e. NN0 ) | 
						
							| 44 |  | nn0gcdid0 |  |-  ( A e. NN0 -> ( A gcd 0 ) = A ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A gcd 0 ) = A ) | 
						
							| 46 | 40 41 45 | 3eqtr3rd |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> A = 1 ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = ( 1 ^ N ) ) | 
						
							| 48 | 26 | 3ad2ant2 |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> N e. ZZ ) | 
						
							| 49 | 48 28 | syl |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 1 ^ N ) = 1 ) | 
						
							| 50 | 47 49 | eqtrd |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( A ^ N ) = 1 ) | 
						
							| 51 | 39 | oveq1d |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = ( 0 ^ N ) ) | 
						
							| 52 | 8 | 3ad2ant2 |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 0 ^ N ) = 0 ) | 
						
							| 53 | 51 52 | eqtrd |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( B ^ N ) = 0 ) | 
						
							| 54 | 50 53 | oveq12d |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 1 gcd 0 ) ) | 
						
							| 55 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 56 |  | nn0gcdid0 |  |-  ( 1 e. NN0 -> ( 1 gcd 0 ) = 1 ) | 
						
							| 57 | 55 56 | mp1i |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( 1 gcd 0 ) = 1 ) | 
						
							| 58 | 54 57 | eqtrd |  |-  ( ( ( A e. NN /\ B = 0 ) /\ N e. NN /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) | 
						
							| 59 | 58 | 3exp |  |-  ( ( A e. NN /\ B = 0 ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 60 |  | oveq12 |  |-  ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) | 
						
							| 61 |  | gcd0val |  |-  ( 0 gcd 0 ) = 0 | 
						
							| 62 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 63 | 61 62 | eqnetri |  |-  ( 0 gcd 0 ) =/= 1 | 
						
							| 64 | 63 | a1i |  |-  ( ( A = 0 /\ B = 0 ) -> ( 0 gcd 0 ) =/= 1 ) | 
						
							| 65 | 60 64 | eqnetrd |  |-  ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) =/= 1 ) | 
						
							| 66 | 65 | neneqd |  |-  ( ( A = 0 /\ B = 0 ) -> -. ( A gcd B ) = 1 ) | 
						
							| 67 | 66 | pm2.21d |  |-  ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) | 
						
							| 68 | 67 | a1d |  |-  ( ( A = 0 /\ B = 0 ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 69 | 5 38 59 68 | ccase |  |-  ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 70 | 2 3 69 | syl2anb |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 71 |  | oveq2 |  |-  ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) | 
						
							| 72 | 71 | 3ad2ant3 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( A ^ N ) = ( A ^ 0 ) ) | 
						
							| 73 |  | nn0cn |  |-  ( A e. NN0 -> A e. CC ) | 
						
							| 74 | 73 | 3ad2ant1 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> A e. CC ) | 
						
							| 75 | 74 | exp0d |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( A ^ 0 ) = 1 ) | 
						
							| 76 | 72 75 | eqtrd |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( A ^ N ) = 1 ) | 
						
							| 77 |  | oveq2 |  |-  ( N = 0 -> ( B ^ N ) = ( B ^ 0 ) ) | 
						
							| 78 | 77 | 3ad2ant3 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( B ^ N ) = ( B ^ 0 ) ) | 
						
							| 79 |  | nn0cn |  |-  ( B e. NN0 -> B e. CC ) | 
						
							| 80 | 79 | 3ad2ant2 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> B e. CC ) | 
						
							| 81 | 80 | exp0d |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( B ^ 0 ) = 1 ) | 
						
							| 82 | 78 81 | eqtrd |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( B ^ N ) = 1 ) | 
						
							| 83 | 76 82 | oveq12d |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 1 gcd 1 ) ) | 
						
							| 84 |  | 1gcd |  |-  ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) | 
						
							| 85 | 32 84 | mp1i |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( 1 gcd 1 ) = 1 ) | 
						
							| 86 | 83 85 | eqtrd |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) | 
						
							| 87 | 86 | 3expia |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( N = 0 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) | 
						
							| 88 | 87 | a1dd |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( N = 0 -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 89 | 70 88 | jaod |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( N e. NN \/ N = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) ) | 
						
							| 90 | 89 | 3impia |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( N e. NN \/ N = 0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) | 
						
							| 91 | 1 90 | syl3an3b |  |-  ( ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |