Step |
Hyp |
Ref |
Expression |
1 |
|
nn0seqcvgd.1 |
|- ( ph -> F : NN0 --> NN0 ) |
2 |
|
nn0seqcvgd.2 |
|- ( ph -> N = ( F ` 0 ) ) |
3 |
|
nn0seqcvgd.3 |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) =/= 0 -> ( F ` ( k + 1 ) ) < ( F ` k ) ) ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
|
ffvelrn |
|- ( ( F : NN0 --> NN0 /\ 0 e. NN0 ) -> ( F ` 0 ) e. NN0 ) |
6 |
1 4 5
|
sylancl |
|- ( ph -> ( F ` 0 ) e. NN0 ) |
7 |
2 6
|
eqeltrd |
|- ( ph -> N e. NN0 ) |
8 |
7
|
nn0red |
|- ( ph -> N e. RR ) |
9 |
8
|
leidd |
|- ( ph -> N <_ N ) |
10 |
|
fveq2 |
|- ( m = 0 -> ( F ` m ) = ( F ` 0 ) ) |
11 |
|
oveq2 |
|- ( m = 0 -> ( N - m ) = ( N - 0 ) ) |
12 |
10 11
|
breq12d |
|- ( m = 0 -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` 0 ) <_ ( N - 0 ) ) ) |
13 |
12
|
imbi2d |
|- ( m = 0 -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` 0 ) <_ ( N - 0 ) ) ) ) |
14 |
|
fveq2 |
|- ( m = k -> ( F ` m ) = ( F ` k ) ) |
15 |
|
oveq2 |
|- ( m = k -> ( N - m ) = ( N - k ) ) |
16 |
14 15
|
breq12d |
|- ( m = k -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` k ) <_ ( N - k ) ) ) |
17 |
16
|
imbi2d |
|- ( m = k -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` k ) <_ ( N - k ) ) ) ) |
18 |
|
fveq2 |
|- ( m = ( k + 1 ) -> ( F ` m ) = ( F ` ( k + 1 ) ) ) |
19 |
|
oveq2 |
|- ( m = ( k + 1 ) -> ( N - m ) = ( N - ( k + 1 ) ) ) |
20 |
18 19
|
breq12d |
|- ( m = ( k + 1 ) -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
21 |
20
|
imbi2d |
|- ( m = ( k + 1 ) -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
22 |
|
fveq2 |
|- ( m = N -> ( F ` m ) = ( F ` N ) ) |
23 |
|
oveq2 |
|- ( m = N -> ( N - m ) = ( N - N ) ) |
24 |
22 23
|
breq12d |
|- ( m = N -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` N ) <_ ( N - N ) ) ) |
25 |
24
|
imbi2d |
|- ( m = N -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` N ) <_ ( N - N ) ) ) ) |
26 |
2 9
|
eqbrtrrd |
|- ( ph -> ( F ` 0 ) <_ N ) |
27 |
8
|
recnd |
|- ( ph -> N e. CC ) |
28 |
27
|
subid1d |
|- ( ph -> ( N - 0 ) = N ) |
29 |
26 28
|
breqtrrd |
|- ( ph -> ( F ` 0 ) <_ ( N - 0 ) ) |
30 |
29
|
a1i |
|- ( N e. NN0 -> ( ph -> ( F ` 0 ) <_ ( N - 0 ) ) ) |
31 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
32 |
|
posdif |
|- ( ( k e. RR /\ N e. RR ) -> ( k < N <-> 0 < ( N - k ) ) ) |
33 |
31 8 32
|
syl2anr |
|- ( ( ph /\ k e. NN0 ) -> ( k < N <-> 0 < ( N - k ) ) ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( k < N <-> 0 < ( N - k ) ) ) |
35 |
|
breq1 |
|- ( ( F ` ( k + 1 ) ) = 0 -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> 0 < ( N - k ) ) ) |
36 |
35
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> 0 < ( N - k ) ) ) |
37 |
|
peano2nn0 |
|- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
38 |
|
ffvelrn |
|- ( ( F : NN0 --> NN0 /\ ( k + 1 ) e. NN0 ) -> ( F ` ( k + 1 ) ) e. NN0 ) |
39 |
1 37 38
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. NN0 ) |
40 |
39
|
nn0zd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. ZZ ) |
41 |
7
|
nn0zd |
|- ( ph -> N e. ZZ ) |
42 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
43 |
|
zsubcl |
|- ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ ) |
44 |
41 42 43
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( N - k ) e. ZZ ) |
45 |
|
zltlem1 |
|- ( ( ( F ` ( k + 1 ) ) e. ZZ /\ ( N - k ) e. ZZ ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( ( N - k ) - 1 ) ) ) |
46 |
40 44 45
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( ( N - k ) - 1 ) ) ) |
47 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
48 |
|
ax-1cn |
|- 1 e. CC |
49 |
|
subsub4 |
|- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( N - k ) - 1 ) = ( N - ( k + 1 ) ) ) |
50 |
48 49
|
mp3an3 |
|- ( ( N e. CC /\ k e. CC ) -> ( ( N - k ) - 1 ) = ( N - ( k + 1 ) ) ) |
51 |
27 47 50
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( ( N - k ) - 1 ) = ( N - ( k + 1 ) ) ) |
52 |
51
|
breq2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) <_ ( ( N - k ) - 1 ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
53 |
46 52
|
bitrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
54 |
53
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
55 |
34 36 54
|
3bitr2d |
|- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( k < N <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
56 |
55
|
biimpa |
|- ( ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) /\ k < N ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) |
57 |
56
|
an32s |
|- ( ( ( ( ph /\ k e. NN0 ) /\ k < N ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) |
58 |
57
|
a1d |
|- ( ( ( ( ph /\ k e. NN0 ) /\ k < N ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
59 |
39
|
nn0red |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. RR ) |
60 |
1
|
ffvelrnda |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. NN0 ) |
61 |
60
|
nn0red |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR ) |
62 |
44
|
zred |
|- ( ( ph /\ k e. NN0 ) -> ( N - k ) e. RR ) |
63 |
|
ltletr |
|- ( ( ( F ` ( k + 1 ) ) e. RR /\ ( F ` k ) e. RR /\ ( N - k ) e. RR ) -> ( ( ( F ` ( k + 1 ) ) < ( F ` k ) /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) < ( N - k ) ) ) |
64 |
59 61 62 63
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) < ( F ` k ) /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) < ( N - k ) ) ) |
65 |
64 53
|
sylibd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) < ( F ` k ) /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
66 |
3 65
|
syland |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) =/= 0 /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
67 |
66
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ k < N ) -> ( ( ( F ` ( k + 1 ) ) =/= 0 /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
68 |
67
|
expdimp |
|- ( ( ( ( ph /\ k e. NN0 ) /\ k < N ) /\ ( F ` ( k + 1 ) ) =/= 0 ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
69 |
58 68
|
pm2.61dane |
|- ( ( ( ph /\ k e. NN0 ) /\ k < N ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
70 |
69
|
anasss |
|- ( ( ph /\ ( k e. NN0 /\ k < N ) ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
71 |
70
|
expcom |
|- ( ( k e. NN0 /\ k < N ) -> ( ph -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
72 |
71
|
a2d |
|- ( ( k e. NN0 /\ k < N ) -> ( ( ph -> ( F ` k ) <_ ( N - k ) ) -> ( ph -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
73 |
72
|
3adant1 |
|- ( ( N e. NN0 /\ k e. NN0 /\ k < N ) -> ( ( ph -> ( F ` k ) <_ ( N - k ) ) -> ( ph -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
74 |
13 17 21 25 30 73
|
fnn0ind |
|- ( ( N e. NN0 /\ N e. NN0 /\ N <_ N ) -> ( ph -> ( F ` N ) <_ ( N - N ) ) ) |
75 |
7 7 9 74
|
syl3anc |
|- ( ph -> ( ph -> ( F ` N ) <_ ( N - N ) ) ) |
76 |
75
|
pm2.43i |
|- ( ph -> ( F ` N ) <_ ( N - N ) ) |
77 |
27
|
subidd |
|- ( ph -> ( N - N ) = 0 ) |
78 |
76 77
|
breqtrd |
|- ( ph -> ( F ` N ) <_ 0 ) |
79 |
1 7
|
ffvelrnd |
|- ( ph -> ( F ` N ) e. NN0 ) |
80 |
79
|
nn0ge0d |
|- ( ph -> 0 <_ ( F ` N ) ) |
81 |
79
|
nn0red |
|- ( ph -> ( F ` N ) e. RR ) |
82 |
|
0re |
|- 0 e. RR |
83 |
|
letri3 |
|- ( ( ( F ` N ) e. RR /\ 0 e. RR ) -> ( ( F ` N ) = 0 <-> ( ( F ` N ) <_ 0 /\ 0 <_ ( F ` N ) ) ) ) |
84 |
81 82 83
|
sylancl |
|- ( ph -> ( ( F ` N ) = 0 <-> ( ( F ` N ) <_ 0 /\ 0 <_ ( F ` N ) ) ) ) |
85 |
78 80 84
|
mpbir2and |
|- ( ph -> ( F ` N ) = 0 ) |