Description: Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nn0sinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
nn0sinds.2 | |- ( x = N -> ( ph <-> ch ) ) |
||
nn0sinds.3 | |- ( x e. NN0 -> ( A. y e. ( 0 ... ( x - 1 ) ) ps -> ph ) ) |
||
Assertion | nn0sinds | |- ( N e. NN0 -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
2 | nn0sinds.2 | |- ( x = N -> ( ph <-> ch ) ) |
|
3 | nn0sinds.3 | |- ( x e. NN0 -> ( A. y e. ( 0 ... ( x - 1 ) ) ps -> ph ) ) |
|
4 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
5 | elnn0uz | |- ( x e. NN0 <-> x e. ( ZZ>= ` 0 ) ) |
|
6 | 5 3 | sylbir | |- ( x e. ( ZZ>= ` 0 ) -> ( A. y e. ( 0 ... ( x - 1 ) ) ps -> ph ) ) |
7 | 1 2 6 | uzsinds | |- ( N e. ( ZZ>= ` 0 ) -> ch ) |
8 | 4 7 | sylbi | |- ( N e. NN0 -> ch ) |