Description: The square function is one-to-one for nonnegative integers. (Contributed by AV, 25-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0sq11 | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
2 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
3 | 1 2 | jca | |- ( A e. NN0 -> ( A e. RR /\ 0 <_ A ) ) |
4 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
5 | nn0ge0 | |- ( B e. NN0 -> 0 <_ B ) |
|
6 | 4 5 | jca | |- ( B e. NN0 -> ( B e. RR /\ 0 <_ B ) ) |
7 | sq11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |
|
8 | 3 6 7 | syl2an | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |