Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( N ^ 2 ) = 1 ) |
2 |
1
|
fveq2d |
|- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` ( N ^ 2 ) ) = ( sqrt ` 1 ) ) |
3 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
4 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
5 |
|
sqrtsq |
|- ( ( N e. RR /\ 0 <_ N ) -> ( sqrt ` ( N ^ 2 ) ) = N ) |
6 |
3 4 5
|
syl2anc |
|- ( N e. NN0 -> ( sqrt ` ( N ^ 2 ) ) = N ) |
7 |
6
|
adantr |
|- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` ( N ^ 2 ) ) = N ) |
8 |
|
sqrt1 |
|- ( sqrt ` 1 ) = 1 |
9 |
8
|
a1i |
|- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` 1 ) = 1 ) |
10 |
2 7 9
|
3eqtr3d |
|- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> N = 1 ) |