| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( N ^ 2 ) = 1 ) | 
						
							| 2 | 1 | fveq2d |  |-  ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` ( N ^ 2 ) ) = ( sqrt ` 1 ) ) | 
						
							| 3 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 4 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 5 |  | sqrtsq |  |-  ( ( N e. RR /\ 0 <_ N ) -> ( sqrt ` ( N ^ 2 ) ) = N ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( N e. NN0 -> ( sqrt ` ( N ^ 2 ) ) = N ) | 
						
							| 7 | 6 | adantr |  |-  ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` ( N ^ 2 ) ) = N ) | 
						
							| 8 |  | sqrt1 |  |-  ( sqrt ` 1 ) = 1 | 
						
							| 9 | 8 | a1i |  |-  ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` 1 ) = 1 ) | 
						
							| 10 | 2 7 9 | 3eqtr3d |  |-  ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> N = 1 ) |