Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|- CCfld e. Ring |
2 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
3 |
1 2
|
ax-mp |
|- CCfld e. CMnd |
4 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
5 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
6 |
5
|
submcmn |
|- ( ( CCfld e. CMnd /\ NN0 e. ( SubMnd ` CCfld ) ) -> ( CCfld |`s NN0 ) e. CMnd ) |
7 |
3 4 6
|
mp2an |
|- ( CCfld |`s NN0 ) e. CMnd |
8 |
|
nn0ex |
|- NN0 e. _V |
9 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
10 |
5 9
|
mgpress |
|- ( ( CCfld e. CMnd /\ NN0 e. _V ) -> ( ( mulGrp ` CCfld ) |`s NN0 ) = ( mulGrp ` ( CCfld |`s NN0 ) ) ) |
11 |
3 8 10
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s NN0 ) = ( mulGrp ` ( CCfld |`s NN0 ) ) |
12 |
|
nn0sscn |
|- NN0 C_ CC |
13 |
|
1nn0 |
|- 1 e. NN0 |
14 |
|
nn0mulcl |
|- ( ( x e. NN0 /\ y e. NN0 ) -> ( x x. y ) e. NN0 ) |
15 |
14
|
rgen2 |
|- A. x e. NN0 A. y e. NN0 ( x x. y ) e. NN0 |
16 |
9
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
17 |
1 16
|
ax-mp |
|- ( mulGrp ` CCfld ) e. Mnd |
18 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
19 |
9 18
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
20 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
21 |
9 20
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
22 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
23 |
9 22
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
24 |
19 21 23
|
issubm |
|- ( ( mulGrp ` CCfld ) e. Mnd -> ( NN0 e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( NN0 C_ CC /\ 1 e. NN0 /\ A. x e. NN0 A. y e. NN0 ( x x. y ) e. NN0 ) ) ) |
25 |
17 24
|
ax-mp |
|- ( NN0 e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( NN0 C_ CC /\ 1 e. NN0 /\ A. x e. NN0 A. y e. NN0 ( x x. y ) e. NN0 ) ) |
26 |
12 13 15 25
|
mpbir3an |
|- NN0 e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
27 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s NN0 ) = ( ( mulGrp ` CCfld ) |`s NN0 ) |
28 |
27
|
submmnd |
|- ( NN0 e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( ( mulGrp ` CCfld ) |`s NN0 ) e. Mnd ) |
29 |
26 28
|
ax-mp |
|- ( ( mulGrp ` CCfld ) |`s NN0 ) e. Mnd |
30 |
11 29
|
eqeltrri |
|- ( mulGrp ` ( CCfld |`s NN0 ) ) e. Mnd |
31 |
|
simpl |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> x e. NN0 ) |
32 |
31
|
nn0cnd |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> x e. CC ) |
33 |
|
simprl |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> y e. NN0 ) |
34 |
33
|
nn0cnd |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> y e. CC ) |
35 |
|
simprr |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> z e. NN0 ) |
36 |
35
|
nn0cnd |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> z e. CC ) |
37 |
32 34 36
|
adddid |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
38 |
32 34 36
|
adddird |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
39 |
37 38
|
jca |
|- ( ( x e. NN0 /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
40 |
39
|
ralrimivva |
|- ( x e. NN0 -> A. y e. NN0 A. z e. NN0 ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
41 |
|
nn0cn |
|- ( x e. NN0 -> x e. CC ) |
42 |
41
|
mul02d |
|- ( x e. NN0 -> ( 0 x. x ) = 0 ) |
43 |
41
|
mul01d |
|- ( x e. NN0 -> ( x x. 0 ) = 0 ) |
44 |
40 42 43
|
jca32 |
|- ( x e. NN0 -> ( A. y e. NN0 A. z e. NN0 ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) ) |
45 |
44
|
rgen |
|- A. x e. NN0 ( A. y e. NN0 A. z e. NN0 ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) |
46 |
5 18
|
ressbas2 |
|- ( NN0 C_ CC -> NN0 = ( Base ` ( CCfld |`s NN0 ) ) ) |
47 |
12 46
|
ax-mp |
|- NN0 = ( Base ` ( CCfld |`s NN0 ) ) |
48 |
|
eqid |
|- ( mulGrp ` ( CCfld |`s NN0 ) ) = ( mulGrp ` ( CCfld |`s NN0 ) ) |
49 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
50 |
5 49
|
ressplusg |
|- ( NN0 e. _V -> + = ( +g ` ( CCfld |`s NN0 ) ) ) |
51 |
8 50
|
ax-mp |
|- + = ( +g ` ( CCfld |`s NN0 ) ) |
52 |
5 22
|
ressmulr |
|- ( NN0 e. _V -> x. = ( .r ` ( CCfld |`s NN0 ) ) ) |
53 |
8 52
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s NN0 ) ) |
54 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
55 |
1 54
|
ax-mp |
|- CCfld e. Mnd |
56 |
|
0nn0 |
|- 0 e. NN0 |
57 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
58 |
5 18 57
|
ress0g |
|- ( ( CCfld e. Mnd /\ 0 e. NN0 /\ NN0 C_ CC ) -> 0 = ( 0g ` ( CCfld |`s NN0 ) ) ) |
59 |
55 56 12 58
|
mp3an |
|- 0 = ( 0g ` ( CCfld |`s NN0 ) ) |
60 |
47 48 51 53 59
|
issrg |
|- ( ( CCfld |`s NN0 ) e. SRing <-> ( ( CCfld |`s NN0 ) e. CMnd /\ ( mulGrp ` ( CCfld |`s NN0 ) ) e. Mnd /\ A. x e. NN0 ( A. y e. NN0 A. z e. NN0 ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) ) ) |
61 |
7 30 45 60
|
mpbir3an |
|- ( CCfld |`s NN0 ) e. SRing |