Metamath Proof Explorer


Theorem nn0sscn

Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022)

Ref Expression
Assertion nn0sscn
|- NN0 C_ CC

Proof

Step Hyp Ref Expression
1 df-n0
 |-  NN0 = ( NN u. { 0 } )
2 nnsscn
 |-  NN C_ CC
3 0cn
 |-  0 e. CC
4 snssi
 |-  ( 0 e. CC -> { 0 } C_ CC )
5 3 4 ax-mp
 |-  { 0 } C_ CC
6 2 5 unssi
 |-  ( NN u. { 0 } ) C_ CC
7 1 6 eqsstri
 |-  NN0 C_ CC