Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
2 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
3 |
|
leloe |
|- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> ( M < N \/ M = N ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( M < N \/ M = N ) ) ) |
5 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
6 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
7 |
|
nnsub |
|- ( ( M e. NN /\ N e. NN ) -> ( M < N <-> ( N - M ) e. NN ) ) |
8 |
7
|
ex |
|- ( M e. NN -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
9 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
10 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
11 |
10
|
subid1d |
|- ( N e. NN -> ( N - 0 ) = N ) |
12 |
|
id |
|- ( N e. NN -> N e. NN ) |
13 |
11 12
|
eqeltrd |
|- ( N e. NN -> ( N - 0 ) e. NN ) |
14 |
9 13
|
2thd |
|- ( N e. NN -> ( 0 < N <-> ( N - 0 ) e. NN ) ) |
15 |
|
breq1 |
|- ( M = 0 -> ( M < N <-> 0 < N ) ) |
16 |
|
oveq2 |
|- ( M = 0 -> ( N - M ) = ( N - 0 ) ) |
17 |
16
|
eleq1d |
|- ( M = 0 -> ( ( N - M ) e. NN <-> ( N - 0 ) e. NN ) ) |
18 |
15 17
|
bibi12d |
|- ( M = 0 -> ( ( M < N <-> ( N - M ) e. NN ) <-> ( 0 < N <-> ( N - 0 ) e. NN ) ) ) |
19 |
14 18
|
syl5ibr |
|- ( M = 0 -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
20 |
8 19
|
jaoi |
|- ( ( M e. NN \/ M = 0 ) -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
21 |
6 20
|
sylbi |
|- ( M e. NN0 -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
22 |
|
nn0nlt0 |
|- ( M e. NN0 -> -. M < 0 ) |
23 |
22
|
pm2.21d |
|- ( M e. NN0 -> ( M < 0 -> ( 0 - M ) e. NN ) ) |
24 |
|
nngt0 |
|- ( ( 0 - M ) e. NN -> 0 < ( 0 - M ) ) |
25 |
|
0re |
|- 0 e. RR |
26 |
|
posdif |
|- ( ( M e. RR /\ 0 e. RR ) -> ( M < 0 <-> 0 < ( 0 - M ) ) ) |
27 |
1 25 26
|
sylancl |
|- ( M e. NN0 -> ( M < 0 <-> 0 < ( 0 - M ) ) ) |
28 |
24 27
|
syl5ibr |
|- ( M e. NN0 -> ( ( 0 - M ) e. NN -> M < 0 ) ) |
29 |
23 28
|
impbid |
|- ( M e. NN0 -> ( M < 0 <-> ( 0 - M ) e. NN ) ) |
30 |
|
breq2 |
|- ( N = 0 -> ( M < N <-> M < 0 ) ) |
31 |
|
oveq1 |
|- ( N = 0 -> ( N - M ) = ( 0 - M ) ) |
32 |
31
|
eleq1d |
|- ( N = 0 -> ( ( N - M ) e. NN <-> ( 0 - M ) e. NN ) ) |
33 |
30 32
|
bibi12d |
|- ( N = 0 -> ( ( M < N <-> ( N - M ) e. NN ) <-> ( M < 0 <-> ( 0 - M ) e. NN ) ) ) |
34 |
29 33
|
syl5ibrcom |
|- ( M e. NN0 -> ( N = 0 -> ( M < N <-> ( N - M ) e. NN ) ) ) |
35 |
21 34
|
jaod |
|- ( M e. NN0 -> ( ( N e. NN \/ N = 0 ) -> ( M < N <-> ( N - M ) e. NN ) ) ) |
36 |
5 35
|
syl5bi |
|- ( M e. NN0 -> ( N e. NN0 -> ( M < N <-> ( N - M ) e. NN ) ) ) |
37 |
36
|
imp |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( N - M ) e. NN ) ) |
38 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
39 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
40 |
|
subeq0 |
|- ( ( N e. CC /\ M e. CC ) -> ( ( N - M ) = 0 <-> N = M ) ) |
41 |
38 39 40
|
syl2anr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N - M ) = 0 <-> N = M ) ) |
42 |
|
eqcom |
|- ( N = M <-> M = N ) |
43 |
41 42
|
bitr2di |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M = N <-> ( N - M ) = 0 ) ) |
44 |
37 43
|
orbi12d |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M < N \/ M = N ) <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) ) |
45 |
4 44
|
bitrd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) ) |
46 |
|
elnn0 |
|- ( ( N - M ) e. NN0 <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) |
47 |
45 46
|
bitr4di |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |