Metamath Proof Explorer


Theorem nn0suc

Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998)

Ref Expression
Assertion nn0suc
|- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) )

Proof

Step Hyp Ref Expression
1 df-ne
 |-  ( A =/= (/) <-> -. A = (/) )
2 nnsuc
 |-  ( ( A e. _om /\ A =/= (/) ) -> E. x e. _om A = suc x )
3 1 2 sylan2br
 |-  ( ( A e. _om /\ -. A = (/) ) -> E. x e. _om A = suc x )
4 3 ex
 |-  ( A e. _om -> ( -. A = (/) -> E. x e. _om A = suc x ) )
5 4 orrd
 |-  ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) )