Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0suc | |- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
2 | nnsuc | |- ( ( A e. _om /\ A =/= (/) ) -> E. x e. _om A = suc x ) |
|
3 | 1 2 | sylan2br | |- ( ( A e. _om /\ -. A = (/) ) -> E. x e. _om A = suc x ) |
4 | 3 | ex | |- ( A e. _om -> ( -. A = (/) -> E. x e. _om A = suc x ) ) |
5 | 4 | orrd | |- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) ) |